
Strong and weak principles of
Bayesian machine learning for

systems neuroscience

Kristopher Torp Jensen

Department of Engineering
University of Cambridge

This dissertation is submitted for the degree of
Doctor of Philosophy

Jesus College April 2023

Declaration

I hereby declare that except where specific reference is made to the work of others, the contents
of this dissertation are original and have not been submitted in whole or in part for consideration
for any other degree or qualification in this, or any other university. This dissertation is my
own work and contains nothing which is the outcome of work done in collaboration with others,
except as specified in the text and Acknowledgements. This dissertation contains fewer than
65,000 words including appendices, footnotes, tables and equations and has fewer than 150
figures.

Kristopher Torp Jensen
April 2023

Strong and weak principles of Bayesian machine learning
for systems neuroscience

Kristopher Torp Jensen

Neuroscientists are recording neural activity and behaviour at a rapidly increasing scale. This
provides an unprecedented window into the neural underpinnings of behaviour, while also
pushing the need for new techniques to analyse and model these large-scale datasets. Inspiration
for such tools can be found in the Bayesian machine learning literature, which provides a set
of principled techniques that allow us to perform inference in complex problem settings with
large parameter spaces. When applied to neural population recordings, we propose that these
approaches can be divided into ‘weak’ and ‘strong’ models of neural data. The weak models
consist of tools for analysing experimental data, which build our own prior knowledge of neural
circuits directly into the analysis pipeline. In contrast, strong Bayesian models of neural
dynamics posit that the brain itself performs something akin to Bayesian inference. In this view,
we can interpret our Bayesian machine learning models as algorithmic or mechanistic models of
the learning processes and computations taking place in the biological brain. In this work, we
first provide an overview of Bayesian machine learning and its applications to neuroscience,
highlighting how both the strong and weak approaches have improved our understanding of
neural computations in recent years. We then develop several new models in this field, which
provide insights into neural computations ranging from motor control to navigation and decision
making. These models can be grouped into three broad categories. First, we construct a series
of new ‘weak’ latent variable models that allow us to infer the dimensionality and topology
of neural data in an unsupervised manner. We highlight the utility of such approaches on
synthetic data and across several biological circuits involved in motor control and navigation.
Second, we propose a new method for Bayesian continual learning and relate it to longitudinal
recordings of neural activity as a ‘strong’ model of biological learning and memory. Finally, we
develop a new ‘strong’ model of planning and decision making through the lens of reinforcement
learning formulated as Bayesian inference. In contrast to previous network models, we explicitly
build in the capacity for planning-by-simulation and show that this explains many features
of both human behaviour and rodent hippocampal replays. This results in a new theory of
the role of hippocampus in flexible planning. The new methods developed in this work both
expand the Bayesian toolbox available to systems neuroscientists and provide new insights into
the neural computations driving natural behaviours.

Acknowledgements

Science is collaborative. Much of this work has therefore been done in collaboration with my
excellent colleagues as specified in detail here. I have worked with Ta-Chu Kao and Jasmine
Stone on large parts of Section 3.1, some of which was included in the MPhil thesis of Jasmine
Stone and which has also been previously published (Jensen et al., 2021). Ta-Chu and I were
both involved in the conceptualization of the work, while I performed most of the analyses,
generated most of the figures, and wrote the bulk of the text. Jasmine and Ta-Chu were both
heavily involved in writing the software used for this work and in later stages of writing and
editing. I also collaborated with Ta-Chu Kao on much of the work in Section 3.2, part of
which was included in their PhD thesis and which has also been previously published (Jensen
et al., 2020, 2022b). For this work, my primary contribution was the conceptualization of the
project and carrying out most of the analyses, while Ta-Chu helped substantially with software
development and later stages of writing and editing. Additionally, I worked with Ta-Chu Kao
on large parts of Section 4.1, which has been published previously (Kao et al., 2021a). Ta-Chu
was responsible for the initial conceptualization of this work, while we collaborated on the
experiments and analyses, and I wrote much of the initial text. In Section 4.2, I also compare
our computational models to data from Jensen et al. (2022a). Some of this data was used in
my previously submitted MPhil thesis, and it only forms a small part of the present PhD thesis,
which is more focused on the computational modelling work. The code used to run human
behavioural experiments in Chapter 5 was written by Guillaume Hennequin, while I colleceted
the data, performed all analyses, trained the computational models, and wrote the majority
of the text – with input from Guillaume Hennequin and Marcelo Mattar in all phases of the
project. This work is currently under review and is available as a preprint (Jensen et al., 2023).
All of the research contained in this thesis was carried out under the supervision of Guillaume
Hennequin, and I am grateful for his advice and support throughout this journey.

Table of contents

List of figures xi

List of tables xiii

1 Introduction 1
1.1 Bayesian machine learning in systems neuroscience 1
1.2 Weak principle of Bayesian machine learning 3
1.3 Strong principle of Bayesian machine learning 4
1.4 Structure and outline . 5

2 Background 7
2.1 Gaussian process regression . 7
2.2 Latent variable models for high-dimensional data 9

2.2.1 Motivation and Bayesian formulation . 9
2.2.2 Parametric models . 10
2.2.3 Non-parametric models . 11

2.3 Variational Bayesian inference for computational tractability 12
2.3.1 Inference can be formulated as optimization 12
2.3.2 Optimization-based inference can be done by gradient descent 14

2.4 Continual learning as Bayesian inference . 15
2.4.1 Problem setting and notation . 15
2.4.2 Bayesian continual learning . 16

2.5 Reinforcement learning as Bayesian inference 18
2.5.1 The reinforcement learning problem and policy gradients 18
2.5.2 Reformulating RL as Bayesian inference 20

3 Latent variable models 25
3.1 Bayesian Gaussian process factor analysis . 25

3.1.1 Introduction . 25
3.1.2 Method . 27
3.1.3 Experiments and results . 31
3.1.4 Discussion . 38

3.2 Manifold Gaussian process latent variable models 40
3.2.1 Introduction . 40
3.2.2 Method . 41

x Table of contents

3.2.3 Experiments and results . 47
3.2.4 Discussion . 50

4 Continual learning 53
4.1 Natural continual learning . 53

4.1.1 Introduction . 53
4.1.2 Method . 55
4.1.3 Experiments and results . 59
4.1.4 Discussion . 64

4.2 Representational stability in biological and artificial circuits 65
4.2.1 Introduction . 65
4.2.2 Two classes of continual learning algorithms 67
4.2.3 Discussion . 71

5 Reinforcement learning to plan 73
5.1 Introduction . 73
5.2 Results . 76

5.2.1 Humans think for different durations in different contexts 76
5.2.2 A recurrent network model of planning 77
5.2.3 Human thinking times correlate with agent rollouts 81
5.2.4 Rollouts improve the policy of the RL agent 83
5.2.5 Hippocampal replays resemble policy rollouts 85
5.2.6 RL agents use rollouts to optimize their hidden state 88

5.3 Discussion . 91
5.3.1 Neural mechanisms of planning and decision making 91
5.3.2 Alternative planning algorithms . 92
5.3.3 Why do we spend time thinking? . 93

6 Discussion 95

References 97

Appendix A Bayesian GPFA 117

Appendix B Manifold GPLVMs 139

Appendix C Natural continual learning 151

Appendix D Reinforcement learning 175
D.1 Supplementary figures . 175
D.2 Methods . 184

List of figures

1.1 Cosyne word frequency . 2

2.1 Comparison of LVMs in neuroscience . 12

3.1 bGPFA schematic . 26
3.2 bGPFA applied to synthetic data . 32
3.3 bGPFA applied to primate data . 35
3.4 bGPFA during a quiescent period . 38
3.5 mGPLVM schematic . 41
3.6 mGPLVM applied to synthetic data . 47
3.7 mGPLVM on higher-dimensional manifolds . 48
3.8 mGPLVM applied to Drosophila melanogaster 50

4.1 NCL toy problem . 55
4.2 NCL in feedforward networks . 60
4.3 NCL in recurrent networks . 62
4.4 Dynamics of NCL . 63
4.5 Comparison of biological and NCL dynamics 69
4.6 Comparison of continual learning loss landscapes 70

5.1 Reinforcement learning model and task schematics 75
5.2 Comparison of RL and human reaction times 80
5.3 Effect of planning on RL agent behavior . 84
5.4 Comparison of RL rollouts and hippocampal replays 87
5.5 Effect of planning on RL agent network dynamics 90

A.1 Further bGPFA analyses of primate data . 117
A.2 FA and GPFA applied to primate data . 119
A.3 bGPFA applied to S1 . 120
A.4 Analysis of reaction times . 121
A.5 Dimensionality with participation ratios . 123
A.6 bGPFA with Poisson noise . 124
A.7 Comparison of variational parameterizations . 128

B.1 mGPLVM applied to Mus musculus . 139
B.2 mGPLVM on the spheres . 143

xii List of figures

B.3 mGPLVM with automatic relevance determination 146
B.4 Two-dimensional mGPLVM applied to Drosophila melanogaster 148

C.1 Comparison of NCL projection matrices to prior work 161
C.2 Comparison of NCL projection matrices to prior work (categorical) 162
C.3 Kronecker approximations to sums of Kronecker products 165
C.4 Continual learning with different regularization strengths 167
C.5 Similarity between ADAM and NCL . 168
C.6 NCL hyperparameter optimization . 170
C.7 Dynamics of DOWM on SMNIST . 172
C.8 Loss landscapes of toy optimization problems for NCL 173

D.1 Overview of human behavioral data . 175
D.2 Thinking time by distance to goal and step within trial 176
D.3 Analyses of different network sizes and planning horizons 177
D.4 Analysis of internal world model accuracy . 178
D.5 Analysis of exploration phase . 179
D.6 Model thinking times with a Euclidean prior 180
D.7 Overview of rodent experimental data . 181
D.8 Analyses of hippocampal replays during away trials 182
D.9 Planning probability after successful and unsuccesful rollouts 182
D.10 Learning and rollout curves for different network sizes 183

List of tables

C.1 Continual learning hyperparameters . 169
C.2 Continual learning numerical results . 171

Chapter 1

Introduction

1.1 Bayesian machine learning in systems neuroscience

Machine learning has had a profound influence on computational neuroscience in recent years,
as is evident from the ubiquity of these approaches in both papers and conferences for systems
neuroscience (Figure 1.1; Saxe et al., 2021). This has followed substantial improvements in
experimental methods for recording simultaneously from large populations of neurons (Pachitariu
et al., 2017; Steinmetz et al., 2021), which has ushered in a new era of population-level analyses as
opposed to classical single-neuron studies (Figure 1.1; Saxena and Cunningham, 2019). Within
the large toolbox of machine learning, Bayesian methods have been particularly prominent in
the field of computational neuroscience (Doya et al., 2007; Yu et al., 2009). This is in contrast to
other areas of machine learning, many of which have been dominated by large overparameterized
models – commonly known as ‘deep learning’ models (LeCun et al., 2015).

The primary difference between these two approaches is that in Bayesian machine learning,
the goal is to infer a posterior distribution over models, and to use this posterior to make
appropriate decisions given the residual uncertainty (Ghahramani, 2015). In machine learning,
this is often achieved by explicitly modelling the uncertainty over (some subset of) model
parameters – which in this case should actually be considered random variables instead (MacKay,
1992). The difficulty with this approach is that it requires us to perform inference in the space
of models, which is often intractable or impractical. Additionally, it forces us to explicitly
impose a prior over models, which can be difficult and unintuitive (Fortuin et al., 2021). For
most machine learning applications, it has therefore been more fruitful to simply increase
the number of parameters rather than spending additional computational resources trying to
capture uncertainty (Kaplan et al., 2020; Wenzel et al., 2020). In the limit of large datasets, this
is a logical approach to take as the posterior over models will be dominated by the likelihood
term in the limit of infinite data, and we can approximate the posterior as a delta function at
the maximum likelihood parameter setting.

If Bayesian machine learning has thus remained relatively niche when it comes to industrial
applications (Jumper et al., 2021; Ouyang et al., 2022; Wenzel et al., 2020), why is it so
prominent in the neuroscience community (Doya et al., 2007)? One plausible explanation is
that most neuroscience applications have not been in the large data regime. Indeed, large
neural recordings might cover a few thousand neurons for a couple of hours, yielding ≈ 109 data

2 Introduction

2012 2014 2016 2018 2020 2022
year

0.0

0.5

1.0

1.5

2.0

re
la

tiv
e

fre
qu

en
cy

'neural network'
'machine learning'

2012 2014 2016 2018 2020 2022
year

0.5

1.0

1.5

2.0 'tuning curve'
'neuron'

Figure 1.1 Frequency of keywords in cosyne abstract books. We computed the relative
frequency of certain keywords in the Cosyne abstract book for all years from 2012 through
2022. The frequency was computed as the number of occurrences of each keyword, divided by
the total number of words in the abstract book and normalized by the mean across all years.
Left panel indicates canonical ‘machine learning’-related keywords, which exhibit significantly
positive trends with Pearson correlations of 0.90 for ‘neural network’ (p = 1e-4) and 0.77 for
‘machine learning’ (p = 6e-3). Right panel indicates canonical ‘single neuron’-related keywords,
which exhibit significantly negative trends with Pearson correlations of -0.81 for ‘tuning curve’
(p = 3e-3) and -0.74 for ‘neuron’ (p = 1e-2). We suggest that this is symptomatic of a general
trend of systems neuroscience moving from single-neuron analyses towards population-based
analyses over the past decade (Saxena and Cunningham, 2019).

points at a resolution of 100 Hz (Pachitariu et al., 2017; Steinmetz et al., 2021). By comparison,
the ImageNet dataset (Deng et al., 2009) consists of 1012 pixels, which are commonly combined
with additional data from applying various augmentation algorithms. This is several orders of
magnitude larger than the largest neuroscience dataset but still dwarfed by the large datasets
used by private companies, including the already out-of-date 1014-pixel JFT-300M image dataset
used by Google (Sun et al., 2017) or the 1011-word MassiveText dataset used by DeepMind
(Rae et al., 2021). In addition to these order-of-magnitude differences in the number of data
points, image pixels and whole words contain many more bits of information than a single
near-binary bin of neural activity.

Another reason for the ubiquity of Bayesian models in neuroscience might be that we have good
priors compared to many other fields (Doya et al., 2007). As an example, we know that neural
representations are likely to change continuously over time due to (i) biophysical contraints
on the neurons themselves, and (ii) the smoothness of most physical processes which they
might be representing (Yu et al., 2009). We also have fairly good descriptions of neural firing
statistics, which we can build into our Bayesian likelihood functions (Duncker and Sahani, 2018;
Keeley et al., 2020a; Liu and Lengyel, 2021; Zhao and Park, 2017). Additionally, we generally
assume that neural representations are smooth functions of internal or external variables rather

1.2 Weak principle of Bayesian machine learning 3

than being discontinuous – a necessary requirement for e.g. a ‘tuning curve’ to be well defined
(Jensen et al., 2020). These ideas all provide soft constraints that can naturally be built into
Bayesian models of neural data.

A separate reason why Bayesian ML is prominent in neuroscience is that the brain itself is
often assumed to be ‘Bayesian’ (Doya et al., 2007), making Bayesian machine learning a natural
language for describing and understanding neural computations. In this view, the brain is
trying to infer some distribution over possible realities (‘models’) that is consistent with a set of
observations, which allows us to make appropriate decisions in the face of the inevitable noise
and uncertainty of the world around us (Doya et al., 2007). This also highlights an important
distinction between the types of probabilistic models we commonly use in systems neuroscience:
namely Bayesian machine learning as an analysis tool for making sense of noisy data, and
Bayesian machine learning as a mechanistic or algorithmic model of computations performed
by the brain.

We will term these two classes of models the ‘weak’ and ‘strong’ principle of Bayesian machine
learning for systems neuroscience respectively – mirroring a similar recent distinction between
different types of dimensionality reduction for neural data by Humphries (2020). The remainder
of this section will provide a brief review of these two classes of approaches in systems neuro-
science as well as a discussion of their respective use cases. This will be followed by the bulk of
the thesis, which develops a series of new Bayesian approaches to systems neuroscience, starting
from weak methods for data analysis and leading to stronger models of neural computations
and behaviour. Finally, we will provide a summary and outlook of future directions in the field
of Bayesian machine learning for neuroscience.

1.2 Weak principle of Bayesian machine learning

In systems neuroscience, it is common to record either behaviour or neural activity over extended
periods of time (Dunn et al., 2021; Mathis et al., 2018; Pachitariu et al., 2017; Steinmetz et al.,
2021). We often assume that these recordings constitute a noisy readout of either another
observed quantity or some underlying ‘latent’ process (Ashwood et al., 2022; Bolkan et al.,
2022; Pillow et al., 2008; Yu et al., 2009). A frequent goal is therefore to build an explicit model
of this relationship in order to understand e.g. which covariates modulate the activity of a
given set of neurons (Glaser et al., 2020). These models can be considered extensions of linear
regression, and they are often formulated in an explicitly Bayesian framework, which allows
us to build in prior knowledge such as temporal smoothness and non-negativity of firing rates
(Cunningham and Byron, 2014; Pandarinath et al., 2018; Pillow et al., 2008; Schimel et al., 2021;
Wu et al., 2017a; Yu et al., 2009). While these approaches can help us gain insights into the
types of variables represented by neural populations, they also have practical use cases, e.g. in
the context of brain-computer interfaces (Hochberg et al., 2012; Santhanam et al., 2006; Willett

4 Introduction

et al., 2021). Some of these approaches revolve around an idea that the brain is intrinsically
‘low-dimensional’, which motivates the use of latent variable models as a tool for extracting the
underlying latent representations (Humphries, 2020). However, even in this setting they are
generally not viewed as mechanistic models of neural computation, placing them in the class of
‘weak’ Bayesian machine learning models for systems neuroscience.

1.3 Strong principle of Bayesian machine learning

A wealth of evidence suggests that the brain takes into account uncertainty in processes ranging
from perception (Ernst and Banks, 2002; Knill and Richards, 1996; Körding et al., 2007; Orbán
et al., 2008) to decision making (Drugowitsch et al., 2014; Gold and Shadlen, 2001) and motor
control (Heald et al., 2021; Körding and Wolpert, 2004, 2006). It has therefore been proposed
that the brain solves many computational problems by performing ‘inference’ in a probabilistic
graphical model. A prominent example comes from the sensory domain, where the visual
system has been proposed to implement a process of inferring the latent factors giving rise to
our sensory input (Dayan et al., 1995; Yuille and Kersten, 2006). However, similar theories
have also been proposed of motor control as inverting a forward model of the motor system
conditioned on a desired effect (Jordan and Rumelhart, 1992), and multi-step planning has
been formulated as policy inference in a Markov decision process (Botvinick and Toussaint,
2012; Solway and Botvinick, 2012) – reminiscent of recent accounts of reinforcement learning as
policy inference (Levine, 2018).

These findings and theories have also spurred a wide range of research into how the brain
could carry out such ‘Bayesian’ computations (Rao, 2004). This includes methods centered
around so-called probabilistic population codes (Beck et al., 2008; Ma et al., 2006), which
resemble machine learning approaches based on variational inference (Kingma and Welling, 2013;
MacKay, 2003; Rezende et al., 2014; Wainwright and Jordan, 2008). A separate strand of work
suggests that the brain could perform sampling-based inference (Berkes et al., 2011; Fiser et al.,
2010; Orbán et al., 2016), which resembles Bayesian machine learning methods that use Monte
Carlo sampling (Hastings, 1970; Metropolis et al., 1953). Additionally, recent work has shown
that circuits explicitly trained to perform such sampling-based inference exhibit cortical-like
dynamics (Echeveste et al., 2020), and that learning itself can be modelled as a process of
Bayesian inference (Aitchison et al., 2021). Finally, a Bayesian model known as a ‘variational
autoencoder’, trained to predict future observations, learns similar representations to those
found in the hippocampus and entorhinal cortex (Whittington et al., 2020). This has been taken
as evidence that the hippocampal-entorhinal circuit could implement a similar computation.
Together, these lines of work suggest that approaches and ideas from Bayesian machine learning
can provide ‘strong’ mechanistic and algorithmic models of neural dynamics and behaviour,

1.4 Structure and outline 5

which can in turn inspire and constrain experiments to improve our understanding of the neural
computations underlying natural behaviours.

1.4 Structure and outline

This thesis is structured as follows. First, we provide an introduction to Gaussian process
regression (Section 2.1) and latent variables models (Section 2.2), which form the basis of many
Bayesian approaches for neural data analysis. This is followed by an overview of approximate
Bayesian inference with a focus on variational inference, since variational inference is used for
computational tractability in much of the thesis (Section 2.3). We then present background
sections on Bayesian continual learning (Section 2.4) and reinforcement learning (Section 2.5),
both formulated as forms of probabilistic inference. Together, these five sections cover the
relevant background and literature necessary to understand the original work in later chapters.
We then proceed through the three main chapters containing original research. First, we present
two new Bayesian latent variable models in Chapter 3, which further expand the toolbox of
latent variable models for systems neuroscience. In particular, these new models facilitate
inference of the latent dimensionality and topology of neural data – properties that are often
of interest for neural data analysis (Humphries, 2020). These can be considered weak models
of neural data, which allow us to better understand neural recordings without providing a
mechanistic explanation of the observed phenomena (although they can be considered ‘strong’
models of dimensionality reduction in the terminology of Humphries, 2020). We then present a
new Bayesian algorithm for continual learning in Chapter 4 and investigate how the neural
dynamics arising from this learning paradigm compare to those associated with repeated
engagement in a learned motor task in rodents. This provides a strong model of how the
biological brain can retain past memories over long time periods; a topic of much debate in the
recent neuroscience literature (Chestek et al., 2007; Clopath et al., 2017; Gallego et al., 2020;
Jensen et al., 2022a; Rokni et al., 2007). In Chapter 5, we present a new model of planning and
decision making in a reinforcement learning setting. We show how this strong model captures
several features of behaviour and neural dynamics in humans and rodents and how using an
appropriate prior over actions allows us to better model human planning. Finally, we discuss
the utility of such Bayesian approaches for systems neuroscience in Chapter 6, where we also
consider how they are likely to be used in the future given the current rapid increases in data
sizes and computational capacity.

Chapter 2

Background

Notation

Bold lower-case letters are used to denote column vectors xxx ∈ RN with elements xn, and ‘hats’
indicate normalized vectors x̂xx= xxx/∥xxx∥2. Bold upper-case letters denote matrices XXX ∈ RN×M

with elements Xnm. xxxn refers to the nth row of XXX ∈ RN×M and xxxm its mth column, both
represented as column vectors. We will generally refer to model parameters as θ and variational
parameters as φ. In a slight abuse of notation, θ is used to denote both a set of parameters
and the corresponding parameter set stacked to form a vector. We use xxx∼N (µµµ,ΣΣΣ) to indicate
that xxx is normally distributed with mean µµµ and covariance ΣΣΣ, occasionally using the notation
N (xxx;µµµ,ΣΣΣ) to clarify that we are referring to a distribution over the random variable xxx.

2.1 Gaussian process regression

Many popular approaches to Bayesian machine learning in systems neuroscience rely on Gaussian
processes (GPs), and these will form the basis of much of the work in Chapter 3. We therefore
provide a short practical introduction here and refer to Rasmussen and Williams (2006) for
a more thorough overview. The problem we seek to solve in GP regression is to identify the
functional mapping f between some set of regressors x (e.g. time or a stimulus presented to an
experimental subject) and corresponding noisy observations y (e.g. position or neural firing
rates).

In GP regression, we model our observations as y = f(x)+ ϵ with Gaussian noise ϵ∼N (ϵ;0,σ2
ϵ).

We additionally assume that the function f itself is sampled from a ‘Gaussian process’, which
means that the result fff ∈ RN of evaluting f at any finite number of inputs xxx ∈ RN will be
jointly Gaussian. In other words, for finite N , we have

fff ∼N (fff ;µµµ,KKK), (2.1)

where KKK = k(xxx,xxx) ∈ RN×N is the covariance matrix with elements Kij = k(xi,xj) for some
kernel k(·, ·). µµµ comes from a mean function, which is commonly assumed to be zero (Rasmussen

8 Background

and Williams, 2006). We can then write the distribution over the noisy observations yyy as

yyy ∼N (yyy;0,KKK+σ2
ϵ III). (2.2)

Our goal is now to infer the function f which gave rise to these noisy observations, evaluated
at a finite set of test point xxx∗. Additionally, we seek not just a single point estimate of f , but
rather the full posterior distribution over functions that could have given rise to the data. To
do this, we rely on Bayes’ theorem, which gives us a recipe for evaluating such posteriors:

p(f |yyy)∝ p(yyy|f)p(f). (2.3)

Here, p(f) is a prior over functions induced by the kernel k(·, ·). By choosing an appropriate
kernel, we can therefore build inductive biases into our model of the data, such as smoothness,
linearity, or periodicity.

Since the generative model is jointly Gaussian, we can perform inference analytically. This
gives rise to a posterior over fff∗ at xxx∗ of the form

fff∗ ∼N (µµµ∗,ΣΣΣ∗), (2.4)

where
µµµ∗ = k(xxx∗,xxx)

[
k(xxx,xxx)+σ2

ϵ III
]−1

yyy (2.5)

and
ΣΣΣ∗ = k(xxx∗,xxx∗)−k(xxx∗,xxx)

[
k(xxx,xxx)+σ2

ϵ III
]−1

k(xxx,xxx∗). (2.6)

Here, k(xxx1,xxx2) ∈ RN×M indicates the matrix resulting from evaluating the kernel k(·, ·) for
every pair of elements in xxx1 ∈ RN and xxx2 ∈ RM .

Our model generally contains additional hyperparameters that we want to optimize. This
could for example be the length scale, kernel scale, and noise variance in the commonly used
squared exponential kernel (Rasmussen and Williams, 2006). It is common to optimize these
parameters with respect to the log marginal likelihood of the model evaluated at the training
data xxx, logp(yyy) = log

∫
p(yyy|fff)p(fff |xxx)dfff . This is analytically tractable since the observations are

jointly Gaussian (c.f. Equation 2.2):

logp(yyy) =−1
2y
yyT [KKK+σ2

ϵ III]−1yyy− 1
2 log |KKK+σ2

ϵ III|−
N

2 log2π, (2.7)

where N is the number of training data points.

A challenge with Gaussian process-based approaches is that computing the likelihood has a
computational complexity of O(N3), which makes optimization and inference expensive. For
this reason, a rich literature has focused on developing computationally cheaper approximations

2.2 Latent variable models for high-dimensional data 9

to Gaussian processes (Bui et al., 2017; Quinonero-Candela and Rasmussen, 2005). A popular
approach in this context is the variational sparse Gaussian process framework (Hensman et al.,
2013, 2015a; Titsias, 2009), which forms the basis of some of the practical algorithms developed
in Chapter 3 and will be covered in more depth there and in Section 2.3.

2.2 Latent variable models for high-dimensional data

2.2.1 Motivation and Bayesian formulation

In neuroscience, we often record high-dimensional neural activity YYY ∈ RN×T , where N is the
number of neurons and T the number of recorded timepoints. This consists of a series of noisy
observations, which are correlated across both space and time (Yu et al., 2008). To relate these
observations to neural computations or external variables, such as sensory stimuli or motor
output, it is therefore common to perform some form of dimensionality reduction, which exploits
these correlations to provide a more succinct and intuitive summary of the data (Cunningham
and Byron, 2014; Humphries, 2020). Many of these approaches can be viewed as probabilistic
generative models, which are fitted to the data under the assumption that the observations
arise from a ‘latent’ process with states XXX ∈RD×T in a D-dimensional latent space with D<N

(Roweis and Ghahramani, 1999). We note that this is similar to the Gaussian process problem
in Section 2.1, where the function f can be considered to describe the evolution of a ‘latent
variable’. In this section, we are interested in a low-dimensional representation of the data
rather than such a ‘denoised’ but potentially still high-dimensional representation. The goal is
then to (i) learn a functional mapping f : RD→ RN between the low-dimensional latents and
high-dimensional observations, YYY ≈ f(XXX), and (ii) infer the set of latent states XXX.

Similar to the Gaussian process setting, these two challenges can be solved using Bayesian
machine learning. In particular, we infer the latent variables using Bayes’ rule:

p(XXX|YYY)∝ p(YYY |XXX)p(XXX). (2.8)

To learn the functional mapping f(xxx), one common approach is to use a parametric function
fθ(xxx) and learn the parameters θ by maximum likelihood estimation:

θ = argmax
θ

pθ(YYY), (2.9)

where
pθ(YYY) =

∫
XXX
p(YYY |fθ(XXX))p(XXX)dXXX. (2.10)

Here, p(YYY |fθ(XXX)) incorporates the additional observation noise in our data, which is often
assumed to be Gaussian or Poisson (Cunningham and Byron, 2014). An alternative to this

10 Background

parametric approach is to use a non-parametric model and perform inference over the functional
mapping in addition to the latent variables (Titsias and Lawrence, 2010; Wu et al., 2017a):

p(f)∝ p(YYY |f)p(f). (2.11)

We will see in Chapter 3 how this can be useful for several neuroscience applications.

2.2.2 Parametric models

A common family of parametric models is the set of linear Gaussian models (Roweis and
Ghahramani, 1999). These assume that f(XXX) = CCCXXX is linear and that p(YYY |f(XXX)) and p(XXX)
are both Gaussian. This family includes common methods such as PCA and factor analysis,
which also assume that the prior over XXX factorizes across time,

p(XXX) =
∏

t

p(xxxt). (2.12)

However, since neural activity and behaviour are often correlated in time, it can be useful
to build this information into the prior – an example of how explicitly Bayesian approaches
allow us to harness our prior knowledge to build more powerful inference algorithms. This has
commonly been done using a dynamical-systems approach as is the case in e.g. the Kalman
Filter (Kalman, 1960). More recent approaches, such as Gaussian process factor analysis
(GPFA), have instead modelled the latent process as a Gaussian process (c.f. Section 2.1), such
that XXX ∼ GP(0,k(·, ·)) (Rutten et al., 2020; Yu et al., 2008).

The linear Gaussian methods have the major advantage that they are analytically tractable
– albeit with high computational complexity in the case of Gaussian process-based methods.
However, another approach that has become increasingly popular with improvements in com-
puting and approximate inference algorithms is to fit non-linear function approximators to the
data, often inspired by variational autoencoders (Kingma and Welling, 2013; Rezende et al.,
2014). Notable examples include ‘Latent Factor Analysis with Dynamical Systems’ (LFADS;
Pandarinath et al., 2018) and the more recent ‘iLQR-VAE’ (Schimel et al., 2021). Both of these
methods model p(XXX) with a non-linear recurrent neural network, and they can use either linear
or non-linear f(XXX). These approaches are motivated by the observation that the brain itself
can often be well-described as a non-linear dynamical system, suggesting that such a generative
model could provide a good description of neural activity in an unsupervised setting as well.
They generally also have many more free parameters compared to simple linear methods and
tend to fit the data better with improved predictions of behavioural variables (Pandarinath
et al., 2018; Schimel et al., 2021). However, such overparameterized non-linear methods come at
the cost of increased model complexity, which both makes training of the model more expensive
and brittle, while also reducing the interpretability of the model after training.

2.2 Latent variable models for high-dimensional data 11

2.2.3 Non-parametric models

In contrast to the parametric methods, we have the set of non-parametric latent variable models.
The most prominent examples of these assume that f(XXX) is drawn from a Gaussian process
(c.f. Section 2.1), such that

f ∼ GP(0,k(·, ·)). (2.13)

This gives rise to a so-called Gaussian process latent variable model (GPLVM), which was
first developed by Lawrence (2005, 2004) and subsequently extended by Titsias and Lawrence
(2010). In a neuroscience context, GPLVMs have been applied to both olfactory (Wu et al.,
2018) and hippocampal (Wu et al., 2017a) data, where they provide a flexible yet interpretable
model to describe non-linear relationships between latent variables and neural activity. For
these purposes, the GPLVM framework was also extended to use a Poisson noise model and
utilize a second GP prior over the latent variables themselves to build in the assumption of
temporal continuity (Wu et al., 2017a). In the case of a GP prior over the latents, the model
becomes an example of a (two-layer) ‘deep Gaussian process’ (Damianou and Lawrence, 2013),
which is a class of models that uses a set of hierarchical Gaussian processes to map between
two datasets (in this case ‘time’ and ‘neural activity’).

GPLVMs have commonly used the ‘squared exponential’ kernel to construct a prior over f ,
which builds in an assumption of smoothness in the mapping from latent variables to average
neural firing rates. However, it is worth noting that this is not the only plausible choice of
kernel, and we will explore alternatives in Chapter 3. Here, it is also worth mentioning that for
a linear kernel, k(xxx1,xxx2) = xxxT

1 xxx2, the GPLVM becomes equivalent to a linear Gaussian model,
but where we compute the marginal likelihood and make predictions by integrating out the
factor matrix CCC (with a unit Gaussian prior p(Cij)) instead of using a maximum-likelihood
estimate. The simplest example of such an approach is Bayesian PCA (Bishop, 1999) – but even
in this simple model, inference is intractable, and we have to resort to approximate inference
procedures (c.f. Section 2.3). A corollary of this observation is that linear Gaussian models
can be seen as a special case of the GPLVM, where the kernel is linear and the posterior is
approximated with a delta function. This provides a unifying theoretical and computational
framework for understanding and implementing many probabilistic latent variable models
used in neuroscience – both linear and non-linear (Figure 2.1). Additionally, it makes explicit
the different assumptions made by PCA-like methods compared to more canonical GPLVMs.
In particular, the primary difference between these sets of approaches is that the canonical
GPLVMs assume a smooth mapping from latents to neural activity, while PCA assumes a linear
mapping from latents to neural activity. Which of these assumptions is most appropriate will
of course depend on the data and application in question.

12 Background

latent
spaceM

prior over
latent states

neural tuning
model

noise
model

Euclidean

non-Euclidean
manifold

independent

correlated (GP)

correlated (AR)

linear GP

nonlinear GP

nonlinear DNN

Gaussian

count model

point process

PCA, FA

Kalman filter
GPFA, GPFADS

pGPFA

continuous-
time
GPFA

GPLVM

p-GPLVM

PfLDS

mGPLVM

latent state
xt ∼ pM(x)

tuning function
fi (·) ∼ GP(·, kM(·, ·))

neural activity
yit ∼ p(y |fi (xt))

xt+1 = A xt + ε

x1

x2

xM

25 s
0

180

360

25 s 0 180 360

ne
ur

on
s

x
(a

ng
le

in
de

g.
)

f i
(x
)

[a
.u

.]

x (angle in deg.)

INFERENCE

Figure 2.1 Comparison of probabilistic latent variable models in neuroscience. Many
latent variable models in neuroscience are explicitly probabilistic and can be viewed as some
combination of a set of common ‘building blocks’. These building blocks include the nature
of the latent space, which will be investigated further in Chapter 3, the prior over latents,
the neural tuning model, and the noise model. Together, these model components specify a
‘probabilistic generative model’ (center), which defines a prior over models that the data could
arise from. Notably, many of these models are contained within the family of ‘Gaussian process
latent variable models’, which can incorporate both linear and non-linear tuning functions f(xxx)
as well as a variety of noise models and priors over latent states. Some of these extensions will
be developed and considered further in Chapter 3. Given such a generative model and some
dataset YYY , it is possible to perform inference over models to elucidate a distribution over latent
variables XXX and functional mappings f conditioned on the data (bottom; example on circular
latent space with non-linear f , c.f. Section 3.2).

2.3 Variational Bayesian inference for computational tractability

2.3.1 Inference can be formulated as optimization

As we have seen in the previous two sections, we generally want to perform inference on the
basis of Bayes’ theorem when applying methods from Bayesian machine learning to systems

2.3 Variational Bayesian inference for computational tractability 13

neuroscience (hence the name). Given a prior p(XXX) over some set of unobserved, or latent,
variables XXX, and a likelihood p(YYY |XXX), we thus want to compute the posterior p(XXX|YYY) given
our observations YYY :

p(XXX|YYY) = p(YYY |XXX)p(XXX)
p(YYY) . (2.14)

Unfortunately this is often intractable, particularly if p(YYY |XXX) hides a complicated generative
model as is often the case in machine learning and computational neuroscience (e.g. Section 2.2).
We are therefore frequently forced to approximate this posterior for practical applications. Two
major approaches to this are Markov chain Monte Carlo methods (Hastings, 1970; Metropolis
et al., 1953) and variational methods (Kingma and Welling, 2013; MacKay, 2003; Rezende
et al., 2014; Wainwright and Jordan, 2008). Most of the work in this thesis relies on variational
inference, and we therefore provide a brief introduction here.

When performing variational inference, we introduce a so-called variational distribution within
a tractable family that will be used to approximate the posterior:

qφ(XXX)≈ p(XXX|YYY). (2.15)

qφ(XXX) contains a set of ‘variational parameters’ φ, which are tweaked to make q(XXX) maximally
similar to the true posterior (‘φ’ is suppressed in the following for notational simplicity).
The degree of (dis)similarity to the posterior can be measured by the Kullback-Leibler (KL)
divergence

KL[q(XXX)||p(XXX|YYY)] =
∫

X
q(XXX) log q(XXX)

p(XXX|YYY)dX
XX

= Eq[logq(XXX)]−Eq[logp(XXX|YYY)]
= Eq[logq(XXX)]−Eq[logp(XXX,YYY)]+Eq[logp(YYY)],

(2.16)

where Eq(·) indicates expectations with respect to the variational distribution q.

Since p(YYY) does not depend on XXX,

Eq[logp(YYY)] = logp(YYY)Eq[1] = logp(YYY) = Constant. (2.17)

We thus isolate this term and write

logp(YYY) =KL[q(XXX)||p(XXX|YYY)]+Eq[logp(XXX,YYY)]−Eq[logq(XXX)] (2.18)
=KL[q(XXX)||p(XXX|YYY)]+ELBO, (2.19)

14 Background

where the evidence lower bound (ELBO) is defined as

ELBO = Eq[logp(XXX,YYY)]−Eq[logq] (2.20)
= logp(YYY)−KL[q||p(XXX|YYY)]. (2.21)

Since logp(YYY) is constant with respect to φ, maximizing the ELBO is equivalent to minimizing
the KL divergence between q(XXX) and the true posterior p(XXX|YYY). This maximization thus
provides the best approximation to the posterior given our parameterization of q, as measured
by the KL divergence. As a result, we have turned our inference problem into an optimization
problem.

From Equation 2.21, we also see that the ELBO serves as a lower bound on the log marginal
likelihood logp(YYY), since KL[q||p(XXX|YYY)]≥ 0 (hence the name ‘ELBO’). This is important since
the likelihood p(YYY |XXX) often contains additional parameters θ, which in a maximum likelihood
setting we would like to optimize with respect to the marginal likelihood (c.f. Section 2.1
and Section 2.2). However, the marginal likelihood is generally intractable, and it is therefore
common practice to optimize model parameters with respect to the ELBO as a proxy.

2.3.2 Optimization-based inference can be done by gradient descent

We now have a conceptual framework for training our models (optimizing θ) and performing
inference (optimizing φ), and in this section we provide further details on how this is done in
practice. We start by re-writing the ELBO slightly to arrive at

ELBO = Eq[logp(YYY |XXX)]+Eq[logp(XXX)]−Eq[logq(XXX)] (2.22)
= Eq[logp(YYY |XXX)]−KL[q(XXX)||p(XXX)]. (2.23)

In many cases, q(XXX) and p(XXX) are chosen to be Gaussian (or otherwise tractable), such that
the KL term can be computed analytically. This leaves the likelihood term, which is commonly
approximated using Monte Carlo samples,

Eq[logp(YYY |XXX)]≈ 1
N

∑
XXX∼q(XXX)

logp(YYY |XXX), (2.24)

where N indicates the number of Monte Carlo samples. This approach only requires us to
evaluate the likelihood for individual samples rather than its expectation with respect to
q.

When optimizing the parameters of the model, it is also necessary to differentiate through
the computation of the ELBO, which is usually done using standard automatic differentiation
software. In order to compute the ELBO in a differentiable manner, it is common to use the

2.4 Continual learning as Bayesian inference 15

so-called ‘reparameterization trick’ (Kingma and Welling, 2013; Rezende et al., 2014). In order
to sample from a parameterized distribution

XXX ∼ qφ(XXX), (2.25)

we rewrite the sampling process as a parameterized function of samples from a fixed reference
distribution:

XXX = gφ(X̃XX) (2.26)
X̃XX ∼ q̃(X̃XX). (2.27)

Here, X̃XX indicates samples from the reference distribution q̃(X̃XX). The key idea is to move the
parameters φ from the sampling process to the evaluation of a differentiable function, turning
the gradient of our expectation into the expectation of a gradient over a fixed distribution q̃.
This allows gradients to be approximated by Monte Carlo sampling, and we can use these to
perform stochastic gradient descent on our objective.

2.4 Continual learning as Bayesian inference

2.4.1 Problem setting and notation

A notable difference between biological intelligence and modern machine learning systems
is the ability of animals to learn continually without forgetting their past experiences and
skills. This is in stark contrast to many machine learning systems, which often exhibit a
phenomenon known as ‘catastrophic forgetting’ of previous abilities when learning a new task
(Kirkpatrick et al., 2017). A natural question thus arises of how biological networks overcome
this challenge, and whether we can take inspiration from biological systems to develop better
ML systems. Much work has been done in this direction in recent years, with a wealth of new
methods designed to overcome the challenge of catastrophic forgetting (Duncker et al., 2020;
Huszár, 2017; Kirkpatrick et al., 2017; Loo et al., 2020; van de Ven et al., 2020; van de Ven and
Tolias, 2019; Zeng et al., 2019). These approaches come in many different forms, each with a
different algorithmic and mechanistic solution. A separate question is therefore whether these
machine learning models can help us better understand how memories are stored and retained in
biological systems by making explicit how network dynamics depend on such algorithmic choices.
Many of these approaches to the continual learning problem can be formulated as a process
of Bayesian inference, and we will provide an overview of the problem setting and existing
methods in this section before discussing further extensions and comparisons to experimental
data in Chapter 4.

16 Background

We use XXX⊗YYY to represent the Kronecker product between matrices XXX ∈Rn×n and YYY ∈Rm×m,
such that (XXX⊗YYY)mi+k,mj+l =XXXijYYY kl. Dk refers to a ‘dataset’ corresponding to task k, which
generally consists of a set of input-output pairs {xxx(i)

k ,yyy
(i)
k } such that ℓk(θ) := logp(Dk|θ) =∑

i logpθ(yyy(i)
k |xxx

(i)
k) is the task-related performance on task k for a model with parameters

θ. Finally, we use D̂k to refer to a dataset generated by inputs from the kth task, where
{ŷyy(i)

k ∼ pθ(yyy|xxx(i)
k)} are drawn from the model distribution M. When approaching a continual

learning problem in machine learning, we train a model on a set of K tasks {D1, . . . ,DK} that
arrive sequentially, where the data distribution Dk for task k in general differs from D̸=k. The
aim is to learn a probabilistic model p(D|θ) that performs well on all tasks. The challenge in
the continual learning setting stems from the sequential nature of learning, and in particular
from the common assumption that the learner does not have access to “past” tasks (i.e., Dj for
j < k) when learning task k.

2.4.2 Bayesian continual learning

The continual learning problem is naturally formalized in a Bayesian framework, whereby the
posterior after k−1 tasks is used as a prior for task k. More specifically, we choose a prior p(θ)
on the model parameters and compute the posterior after observing k tasks according to Bayes’
rule:

p(θ|D1:k)∝ p(θ)
k∏

k′=1
p(Dk′ |θ)

∝ p(θ|D1:k−1)p(Dk|θ), (2.28)

where D1:k is a concatenation of the first k tasks (D1, . . . ,Dk). In theory, it is thus possible
to compute the exact posterior p(θ|D1:k) after k tasks, while only observing Dk, by using the
posterior p(θ|D1:k−1) after k−1 tasks as a prior. However, as is often the case in Bayesian
inference, the difficulty here is that the posterior is typically intractable. To address this
challenge, it is common to perform approximate online Bayesian inference. That is, the
posterior p(θ|D1:k−1) is approximated by a parametric distribution with parameters φk−1. The
approximate posterior q(θ;φk−1) is then used as a prior for task k.

Online Laplace approximation A common approach is to use the Laplace approximation
(MacKay, 2003), whereby the posterior p(θ|D1:k−1) is approximated as a multivariate Gaussian
q using local first and second derivatives of the log posterior (Huszár, 2017; Kirkpatrick et al.,
2017; Ritter et al., 2018). This involves (i) finding a mode µµµk of the posterior during task k,
and (ii) performing a second-order Taylor expansion of the log posterior at µµµk to construct an
approximate Gaussian posterior q(θ;φk) =N (θ;µµµk,ΛΛΛ−1

k), where ΛΛΛk is the precision matrix and
φk = (µµµk,ΛΛΛk). In this case, gradient-based optimization is used to find the posterior mode on

2.4 Continual learning as Bayesian inference 17

task k (c.f. Equation 2.28):

µµµk = argmax
θ

logp(θ|Dk,φk−1) (2.29)

= argmax
θ

logp(Dk|θ)+ logq(θ;φk−1) (2.30)

= argmax
θ

ℓk(θθθ)− 1
2(θ−µµµk−1)⊤ΛΛΛk−1(θ−µµµk−1)︸ ︷︷ ︸

:= Lk(θθθ)

(2.31)

The precision matrix ΛΛΛk is given by the Hessian of the negative log posterior at µµµk:

ΛΛΛk =−∇2
θ logp(θ|Dk,φk−1)

∣∣∣
θ=µµµk

=H(Dk,µµµk)+ΛΛΛk−1, (2.32)

where H(Dk,µµµk) = −∇2
θ logp(Dk|θ)

∣∣
θ=µµµk

is the Hessian of the negative log likelihood of
Dk.

Continual learning with the online Laplace approximation thus involves two steps for each new
task Dk. First, given Dk and the previous posterior q(θ;µµµk−1,ΛΛΛ−1

k−1) (i.e. the new prior), µµµk

is found using gradient-based optimization (Equation 2.31). This step can be interpreted as
optimizing the likelihood of Dk while penalizing changes in the parameters θ according to their
importance for previous tasks, as determined by the prior precision matrix ΛΛΛk−1. Second, the
new posterior precision matrix ΛΛΛk is computed according to Equation 2.32.

Approximating the Hessian In practice, computing ΛΛΛk presents two major difficulties.
First, because q(θ;φk) is a Gaussian distribution, ΛΛΛk has to be positive semi-definite (PSD),
which is not guaranteed for the Hessian H(Dk,µµµk). Second, if the number of model parameters
nθ is large, it may be prohibitive to compute a full (nθ×nθ) matrix. To address the first issue,
it is common to approximate the Hessian with the Fisher information matrix (FIM; Huszár,
2017; Martens, 2014; Ritter et al., 2018):

FFF k = Ep(D̂k|θ)

[
∇θ logp(D̂k|θ)∇θ logp(D̂k|θ)⊤

]∣∣∣
θ=µµµk

≈H(Dk,µµµk) (2.33)

The FIM is PSD, which ensures that ΛΛΛk =∑k
k′=1FFF k′ is also PSD. Computing FFF k may still

be impractical if there are many model parameters, and it is therefore common to further
approximate the FIM using structured approximations with fewer parameters. In particular,
a diagonal approximation to FFF k recovers Elastic Weight Consolidation (EWC; Kirkpatrick
et al., 2017), while a Kronecker-factored approximation (Martens and Grosse, 2015) recovers
the method proposed by Ritter et al. (2018). We denote this method ‘KFAC’ and use it in
Section 4.1.3 as a comparison for our own Kronecker-factored method.

18 Background

2.5 Reinforcement learning as Bayesian inference

2.5.1 The reinforcement learning problem and policy gradients

Reinforcement learning is often used as a theory of how animals learn from experience (Daw
et al., 2011; Geerts et al., 2020; Niv, 2009). Additionally, a wealth of neuroscience research has
suggested that neural circuits directly represent quantities, such as reward prediction errors,
that are central to theories of reinforcement learning in the machine learning literature (Dabney
et al., 2020; Schultz et al., 1997; Wang et al., 2018). It has also recently been suggested that the
process of reinforcement learning can itself be viewed as a process of Bayesian inference in the
space of policies (Levine, 2018; Solway and Botvinick, 2012). This framework naturally allows
for the integration of priors reminiscent of the biases commonly seen in natural behaviour (Lai
and Gershman, 2021), and it could provide a fruitful avenue for improving our understanding
of learning and generalization in biological organisms. In this section, we provide a brief
overview of the reinforcement learning problem setting and canonical policy gradient algorithms
for training RL agents. We then provide an overview of the theory of ‘learning as inference’,
illustrating how the reinforcement learning problem is equivalent to approximate inference in the
space of policies. These ideas will be used in Chapter 5, where we develop a new reinforcement
learning model of planning and decision making.

Problem setting

Here we will provide a short introduction to the reinforcement learning problem in a discrete
state and action space with a finite time horizon and no discounting. For a more general
treatment, we refer to Sutton and Barto (2018). In the discrete problem setting, the environment
consists of states s ∈ S, and the agent can take actions a ∈A. The environment is characterized
by transition and reward probabilities p(st+1, rt|st,at), where rt is the reward at time t. We will
further make the Markov assumption that the next state only depends on the current state and
action, p(st+1, rt|st,at,st−1,at−1, ...,s0,a0) = p(st+1, rt|st,at). We can then define a trajectory
τ = {st,at, rt}Tt=0, where

p(τ) = p(s0)
T∏

t=0
p(st+1, rt|st,at)p(at|st). (2.34)

p(at|st) is the probability of taking action at in state st, which is usually controlled by the
agent and denoted a policy π(at|st). The objective of the agent is to maximize the expected
total reward

J = Eτ [Rτ] = Eτ

[
T∑

t=0
rt|τ

]
, (2.35)

2.5 Reinforcement learning as Bayesian inference 19

where Rτ :=∑T
t=0 rt|τ . This is achieved by optimizing the policy πθ(a|s), with parameters θ, to

maximize the objective

J(θ) = Eτ∼πθ

[
T∑

t=0
rt|τ

]
. (2.36)

Policy gradients

A conceptually simple way to maximize the reward in Equation 2.36 would be to use gradient
descent with gradients given by

∇θJ(θ) =∇θEτ∼πθ
[Rτ] (2.37)

=
∑

τ

Rτ∇θpθ(τ). (2.38)

However, this requires differentiating through the environment, which we may not be able to
do. Instead, we use the ‘log-derivative trick’, which takes advantage of the linearity of the
expectation and the identity ∇θ logf(θ) = f(θ)−1∇θf(θ) to write

∇θJ(θ) =
∑

τ

Rτ∇θpθ(τ) (2.39)

=
∑

τ

Rτpθ(τ)∇θ logpθ(τ) (2.40)

= Eτ∼πθ
[Rτ∇θ logpθ(τ)] , (2.41)

Since the environment does not depend on θ, we can simplify the calculation of∇θ logpθ(τ):

∇θ logpθ(τ) =∇θ

[
logp(s0)+

T∑
t=0

logp(st+1|st,at)+ logπθ(at|st)
]

(2.42)

=
T∑

t=0
∇θ logπθ(at|st). (2.43)

Inserting this in the expression for ∇θJ(θ) and taking a Monte Carlo estimate of the expectation
gives rise to the REINFORCE algorithm (Williams, 1992):

∇θJ(θ) = Eτ∼πθ

[
Rτ

T∑
t=0
∇θ logπθ(at|st)

]
(2.44)

≈ 1
N

∑
τ∼πθ

(
T∑

t=0
rt

)(
T∑

t=0
∇θ logπθ(at|st)

)
. (2.45)

While the REINFORCE algorithm is unbiased, it also has high variance, which can make
learning slow and unstable. It is therefore common to introduce modifications, which can help

20 Background

reduce the variance. The first of these comes from noting that an action taken at time t cannot
affect the reward received at times t′ < t. This allows us to define Rt :=∑T

t′=t rt′ and rewrite
our REINFORCE update as

∇θJ(θ)≈ 1
N

∑
τ∼πθ

T∑
t=0

Rt∇θ logπθ(at|st). (2.46)

It is also straightforward to show that for a baseline B(st) that does not depend on at,

Eτ∼πθ
[B(st)∇θ logπθ(at|st)] =

∫
st

B(st)p(st)
[
∇θ

∫
at

πθ(at|st)dat

]
dst (2.47)

=
∫

st

B(st)p(st) [∇θ1]dst = 0. (2.48)

A corollary of this result is that we can subtract such a baseline from our empirical reward
and still have an unbiased estimator while reducing its variance. A common choice here is the
expected future reward

V (st) = E
[

T∑
t′=t

rt′ |st

]
(2.49)

This gives rise to the so-called ‘actor-critic’ algorithm

∇θJ(θ)≈ 1
N

∑
τ∼πθ

T∑
t=0

(Rt−V (st))∇θ logπθ(at|st). (2.50)

This algorithm and its probabilistic extension (Section 2.5.2) forms the basis of the work in
Chapter 5. Additional variance-reduction methods include bootstrapping, but that is not used
in the present work and we refer to Sutton and Barto (2018) for more details on this and other
extensions.

2.5.2 Reformulating RL as Bayesian inference

While reinforcement learning is most commonly phrased as an optimization problem as in
Section 2.5.1, we can also formulate it as a process of Bayesian inference in a probabilistic
generative model following Levine (2018). This is in some sense the ‘dual’ of Section 2.3, where
we reformulated inference as an optimization problem. As before, we consider an MDP of the
form

p(τ) = p({st, rt,at}Tt=0) (2.51)

= p(s0)
T∏
t

p(st+1, rt|st,at)π(at|st), (2.52)

2.5 Reinforcement learning as Bayesian inference 21

where π(a|s) is a policy that we want to optimize. To perform inference in this setting, we
now introduce an additional class of stochastic binary ‘optimality’ variables Ot ∈ {0,1} (Levine,
2018; Solway and Botvinick, 2012). These are Bernoulli distributed with

p(Ot = 1|st,at)∝ exp[r(st,at)] , (2.53)

where r(st,at) is the reward associated with taking action at in state st. This allows us
to transition from a scalar reward representation to a probabilistic formulation, where the
probabilities now reflect reward magnitude.

In the following, we define p(Ot) := p(Ot = 1) for notational simplicity. To proceed, we condition
on p(Ot = 1) and compute the corresponding posterior distribution over trajectories τ :

p(τ |O1:T)∝ p(O1:T |τ)p(τ)∝ exp
[∑

t

r(st,at)
]
p(τ). (2.54)

This inference process yields the distribution over trajectories given that all of our optimality
variables are ‘1’ (as opposed to 0). This may seem somewhat arbitrary at first sight, but
some intuition can be had from noting that the posterior probability of a trajectory increases
exponentially with its associated total reward. It therefore allows us to move from a scalar to a
probabilistic formulation while retaining the objective of maximizing reward, which is necessary
for incorporating prior knowledge into our policy (see Solway and Botvinick, 2012 and Levine,
2018 for further motivation).

Approximate inference

The inference problem in Equation 2.54 is in general intractable, and to proceed, we will
introduce a variational distribution qφ(τ) as discussed in Section 2.3. We choose q to factorize
in the same way as the true p(τ), and to use the ground truth transition function:

qφ(τ) = qφ(s0)
T∏
t

qφ(st+1, rt|st,at)qφ(at|st) (2.55)

= p(s0)
T∏
t

p(st+1, rt|st,at)qφ(at|st). (2.56)

We will optimize φ to minimize the KL divergence between qφ(τ) and p(τ |O1:T):

KL[q(τ)||p(τ |O1:T)] = logp(O1:T)−L, (2.57)

where
L := Eq [logp(O1:T |τ)]−KL[q(τ)||p(τ)] (2.58)

22 Background

is the ELBO as defined in Section 2.3.

We now insert our expression for logp(Ot|at,st) = rt to arrive at the ‘learning as inference’
objective

L= Eq

[∑
t

rt(at,st)
]
−KL[q(τ)||p(τ)]. (2.59)

We see that this recovers our ‘standard’ RL objective of maximizing expected reward, but with
an additional regularizer towards the prior p(τ). It is worth noting in passing that this KL-
regularized RL objective is very similar to a range of recent models of biological reinforcement
learning (de Saa and Renart, 2022; Lai and Gershman, 2021; Piray and Daw, 2021).

We can also introduce a temperature parameter β in the distribution over O,

pβ(Ot|st,at)∝ exp[βrt(st,at)] . (2.60)

In this case, we instead need to maximize

Lβ = βEq [logpβ=1(O1:T |τ)]−KL[q(τ)||p(τ)] (2.61)
∝ Eq [logpβ=1(O1:T |τ)]−β−1KL[q(τ)||p(τ)]. (2.62)

β thus scales the relative importance of reward (through the likelihood) and the prior over
actions. In the following, we will let β = 1 for notational simplicity and simply note that (i)
this provides a way of scaling the prior while remaining faithful to the Bayesian formulation,
and (ii) as β→∞, we recover canonical non-Bayesian RL since the KL regularization goes to
zero – where our original policy πθ has been replaced by the variational distribution qφ(at|st)
(Section 2.3). Finally we note that the transition terms cancel in the KL:

KL[q(τ)||p(τ)] = Eq [logq(τ)− logp(τ)] (2.63)

= Eq[logp(s0)+
T∑
t

(logp(rt|st,at)+ logqφ(at|st)) (2.64)

− logp(s0)−
T∑
t

(logp(rt|st,at)+ logp(at|st))]

= Eq

[∑
t

(logqφ(at|st)− logp(at|st))
]
. (2.65)

This gives rise to our final ‘learning as inference’ objective:

L= Eq(τ)

[∑
t

rt(at,st)
]
−Eq(τ)

[∑
t

(logqφ(at|st)− logp(at|st))
]
. (2.66)

2.5 Reinforcement learning as Bayesian inference 23

To estimate the gradient of this objective, we use the ‘log derivative trick’ also used for the
policy gradient algorithm in Section 2.5.1:

∇φEqφ
[Rτ] = Eqφ

[∑
t

Rt∇φ logqφ(at|st)
]
. (2.67)

We can then estimate the expectation over qφ by sampling rollouts of the agent given the policy
and using Monte Carlo estimates of Rt∇φ logqφ(at|st). Since the KL term also involves an
expectation over q, we have to use the same log derivative trick here:

∇φEqφ

[∑
t

[
logqφ(at|st) − logp(at|st)

]]
= Eqφ

[∑
t

∇φ logqφ(at|st)
T∑

t′=t

[
logqφ(at′ |st′) − logp(at′ |st′)

]]
.

(2.68)

It is worth considering the form of the objective under a uniform prior over actions p(at|st) =
1/|A|. In this case, we can ignore the log prior term during optimization, and we arrive at the
objective

L= Eq(τ)

[∑
t

rt(at,st)
]

+Eq({s})

[∑
t

H(q(at|st))
]
, (2.69)

where H(q(at|st)) =−∑a[q(at|st) logq(at|st)] is the entropy of the policy at time t and q({s}) is
the distribution of state sequences induced by the policy (marginalized over actions). Learning
as inference thus naturally gives rise to ‘maximum entropy’ reinforcement learning (MERL).
However, the true utility of this learning as inference approach arises when we move beyond such
uniform priors. This has found applications in e.g. multi-task learning settings, where a prior
over actions can arise from marginalizing the policy over tasks (Teh et al., 2017). Additionally,
we will see in Chapter 5 how such a prior can be used to capture biases in human decision
making when encountering a new task.

Chapter 3

Latent variable models

In this chapter, we develop two new ‘weak’ Bayesian machine learning models for neuroscience,
which can be used to extract low-dimensional latent features from high-dimensional neural
recordings. Much previous work has been done in this area, with a range of linear and non-linear
latent variable models being used in the neuroscience community (Cunningham and Byron,
2014). The focus of the methods in this chapter is to infer the dimensionality (Section 3.1) and
topology (Section 3.2) of the neural representations. This is important because neural activity
is thought to be low-dimensional (Gallego et al., 2017) and often represents non-Euclidean
features of the environment (Chaudhuri et al., 2019; Gardner et al., 2022). Capturing these
properties in our statistical models is therefore essential for our understanding of how neural
computations drive natural behaviours. A PyTorch implementation of the methods developed
in this chapter can be found at https://github.com/tachukao/mgplvm-pytorch.

3.1 Bayesian Gaussian process factor analysis

This section has been peer reviewed and published as Jensen et al. (2021).

3.1.1 Introduction

The adult human brain contains upwards of 100 billion neurons (Azevedo et al., 2009). Yet
many of our day-to-day behaviors such as navigation, motor control, and decision making can
be described in much lower dimensional spaces. Accordingly, recent studies across a range of
cognitive and motor tasks have shown that neural population activity can often be accurately
summarised by the dynamics of a “latent state” evolving in a low-dimensional space (Chaudhuri
et al., 2019; Churchland et al., 2012; Ecker et al., 2014; Minxha et al., 2020; Pandarinath et al.,
2018). Inferring and investigating these latent processes can therefore help us understand the
underlying representations and computations implemented by the brain (Humphries, 2020).
To this end, numerous latent variable models have been developed and used to analyze the
activity of populations of simultaneously recorded neurons. These models range from simple
linear projections such as PCA to sophisticated non-linear and temporally correlated models
(Cunningham and Byron, 2014; Gao et al., 2016; Jensen et al., 2020; Pandarinath et al., 2018;
Schimel et al., 2021).

https://github.com/tachukao/mgplvm-pytorch

26 Latent variable models

time

la
te

nt
 st

at
e

prior

latent stateac
tiv

ity
 (n

eu
ro

n
i)

time

ne
ur

on time

la
te

nt
 st

at
e

posterior

latent stateac
tiv

ity
 (n

eu
ro

n
i) signal

noise

Figure 3.1 Bayesian GPFA schematic. Bayesian GPFA places a Gaussian process prior
over the latent states in each dimension as a function of time ttt (p(XXX|ttt); top left) as well as a
linear prior over neural activity as a function of each latent dimension (p(FFF |XXX); bottom left).
Together with a stochastic noise process p(YYY |FFF), which can be discrete for electrophysiological
recordings, this forms a generative model that gives rise to observations YYY (middle). From the
data and priors, bGPFA infers posterior latent states for each latent dimension (p(XXX|YYY); top
right) as well as a posterior predictive observation model for each neuron (p(YYY test|XXXtest,YYY);
bottom right). When combined with automatic relevance determination, the model learns to
automatically discard superfluous latent dimensions by maximizing the log marginal likelihood
of the data (right, black vs. blue).

A popular latent variable model for neural data analysis is Gaussian process factor analysis
(GPFA), which has yielded insights into neural computations ranging from time tracking to
movement preparation and execution (Afshar et al., 2011; Rutten et al., 2020; Sauerbrei et al.,
2020; Sohn et al., 2019). However, fitting GPFA comes with a computational complexity of
O(T 3) and a memory footprint of O(T 2) for T time bins. This prohibits the application of
GPFA to time series longer than a few hundred time bins without artificially chunking such
data into “pseudo-trials” and treating these as independent samples. Additionally, canonical
GPFA assumes a Gaussian noise model while recent work has suggested that non-Gaussian
models often perform better on neural data (Duncker and Sahani, 2018; Keeley et al., 2020a;
Zhao and Park, 2017). Here, we address these challenges by formulating a scalable and doubly
Bayesian version of GPFA (bGPFA; Figure 3.1) with a computational complexity of O(T logT)
and a memory cost of O(T). To do this, we introduce an efficiently parameterized variational
inference strategy that ensures scalability to long recordings while also supporting non-Gaussian
noise models. Additionally, the Bayesian formulation provides a framework for principled model
selection based on approximate marginal likelihoods (Titsias and Lawrence, 2010). This allows
us to perform automatic relevance determination and thus fit a single model without prior
assumptions about the underlying dimensionality, which is instead inferred from the data itself
(Bishop, 1999; Neal, 2012).

3.1 Bayesian Gaussian process factor analysis 27

We validate our method on synthetic and biological data, where bGPFA exhibits superior
performance to GPFA and Poisson GPFA with increased scalability and without requiring
cross-validation to select the latent dimensionality. We then apply bGPFA to longitudinal,
multi-area recordings from primary motor (M1) and sensory (S1) areas during a monkey
self-paced reaching task spanning 30 minutes. bGPFA readily scales to such datasets, and
the inferred latent trajectories improve decoding of kinematic variables compared to the raw
data. This decoding improves further when taking into account the temporal offset between
motor planning encoded by M1 and feedback encoded by S1. We also show that the latent
trajectories for M1 converge to consistent regions of state space for a given reach direction at
the onset of each individual reach. Importantly, the distance in latent space to this preparatory
state from the state at target onset is predictive of reaction times across reaches, similar to
previous results in a task that includes an explicit ‘motor preparation epoch’ where the subject
is not allowed to move (Afshar et al., 2011). This illustrates the functional relevance of such
preparatory activity and suggests that motor preparation takes place even when the task lacks
well-defined trial structure and externally imposed delay periods, consistent with findings by
Lara et al. (2018) and Zimnik and Churchland (2021). Finally, we analyze the task relevance of
slow latent processes identified by bGPFA, which evolve on timescales of seconds; longer than
the millisecond timescales that can be resolved by methods designed for trial-structured data.
We find that some of these slow processes are also predictive of reaction time across reaches,
and we hypothesize that they reflect task engagement, which varies over the course of several
reaches.

3.1.2 Method

Generative model

Latent variable models for neural recordings typically model the neural activity YYY ∈ RN×T of
N neurons at times ttt ∈ RT as arising from shared fluctuations in D latent variables XXX ∈ RD×T

(c.f. Section 2.2). Specifically, the probability of a given recording can be written as

p(YYY |ttt) =
∫
p(YYY |FFF)p(FFF |XXX)p(XXX|ttt)dFFF dXXX, (3.1)

where FFF ∈ RN×T are intermediate, neuron-specific variables that can often be thought of as
firing rates or a similar notion of noise-free activity. For example, GPFA (Yu et al., 2009)

28 Latent variable models

specifies

p(YYY |FFF) =
∏
n,t

N (ynt;fnt,σ
2
n) (3.2)

p(FFF |XXX) = δ(FFF −CCCXXX) (3.3)
p(XXX|ttt) =

∏
d

N (xxxd;000,KKKd) with KKKd = kd(ttt, ttt)) (3.4)

That is, the prior over the dth latent function xd(t) is a Gaussian process (Williams and Ras-
mussen, 1995; Section 2.1) with covariance function kd(·, ·) (usually a radial basis function), and
the observation model p(YYY |XXX) is given by a parametric linear transformation with independent
Gaussian noise.

In this work, we additionally introduce a prior distribution over the mixing matrix CCC ∈ RN×D

with scale parameters specific to each latent dimension. This allows us to learn an appropriate
latent dimensionality for a given dataset using automatic relevance determination (ARD),
similar to Bayesian PCA (Appendix A; Bishop, 1999), rather than relying on cross-validation or
ad-hoc thresholds of variance explained. Unlike in standard GPFA, the log marginal likelihood
(Equation 3.1) becomes intractable with this prior. We therefore develop a novel variational
inference strategy (Wainwright and Jordan, 2008; Section 2.3), which also (i) provides a scalable
implementation appropriate for long continuous neural recordings, and (ii) extends the model
to general non-Gaussian likelihoods better suited for discrete spike counts.

In this new framework, which we call Bayesian GPFA (bGPFA), we use a Gaussian prior over
CCC of the form cnd ∼N (0,s2

d), where sd is a scale parameter associated with latent dimension d.
Integrating CCC out in Equation 3.3 then yields the following observation model:

p(FFF |XXX) =
∏
n

N (fffn;0,XXXTSSS2XXX), with SSS = diag(s1, . . . ,sD). (3.5)

Moreover, we use a general noise model p(YYY |FFF) = ∏
n,t p(ynt|fnt), where p(ynt|fnt) is any

distribution for which we can evaluate its density or PMF in a differentiable manner.

Importantly, integrating over CCC means that the marginal likelihood in Equation 3.1 can decrease
when adding superfluous dimensions that are not needed to explain the data. This is in contrast
to canonical (GP)FA, where adding latent dimensions can only increase the marginal likelihood.
This is countered by bGPFA having the capacity to learn that the scale factors (sd) for any
superfluous dimensions should be zero, in which case they do not contribute to the marginal
likelihood or posterior predictive distribution. The posteriors over the corresponding latent
dimensions collapse to the prior. This ‘pruning’ during training of dimensions that are not
necessary to explain the data is referred to as ‘automatic relevance determination’ (ARD;
Appendix A; Bishop, 1999). We can also fit bGPFA without ARD by tying all scale factors to
a single shared value, sd = s∀d.

3.1 Bayesian Gaussian process factor analysis 29

Variational inference and learning

To train the model and infer both XXX and FFF from the data YYY , we use a nested variational
approach (Section 2.3). It is intractable to compute logp(YYY |ttt) (Equation 3.1) analytically for
bGPFA, and we therefore introduce a lower bound on logp(YYY |ttt) at the outer level and another
one on logp(YYY |XXX) at the inner level. These lower bounds are constructed from approximations
to the posterior distributions over latents (XXX) and noise-free activity (FFF) respectively.

Distribution over latents At the outer level, we introduce a variational distribution q(XXX)
over latents and construct an evidence lower bound (ELBO; Wainwright and Jordan, 2008;
Section 2.3) on the log marginal likelihood of Equation 3.1:

logp(YYY |||ttt)≥ L := Eq(XXX) [logp(YYY |XXX)]−KL [q(XXX)||p(XXX|ttt)] . (3.6)

Conveniently, maximizing this lower bound is equivalent to minimizing KL [q(XXX)||p(XXX|YYY)] and
thus also yields an approximation to the posterior over latents in the form of q(XXX) (Section 2.3).
We estimate the first term of the ELBO using Monte Carlo samples from q(XXX) and compute
the KL term analytically.

Here, we use a so-called whitened parameterization of q(XXX) (Hensman et al., 2015b) that is
both expressive and scalable to large datasets:

q(XXX) =
D∏

d=1
N (xxxd;µµµd,ΣΣΣd) with µµµd =KKK

1
2
d νννd and ΣΣΣd =KKK

1
2
d ΛΛΛdΛΛΛT

dKKK
1
2
d

T

, (3.7)

where KKK
1
2
d is any square root of the prior covariance matrix KKKd, and νννd ∈ RT is a vector

of variational parameters to be optimized. ΛΛΛd ∈ RT ×T is a positive semi-definite variational
matrix whose structure is chosen carefully so that its squared Frobenius norm, log determinant,
and matrix-vector products can all be computed efficiently, which facilitates the evaluation of
Equations 3.8 and 3.9. This whitened parameterization has several advantages. First, it does
not place probability mass where the prior itself does not. In addition to stabilizing learning
(Murray and Adams, 2010), this also guarantees that the posterior is temporally smooth for a
smooth prior. Second, the KL term in Equation 3.6 simplifies to

KL[q(XXX)||p(XXX|ttt)] = 1
2
∑

d

(
∥ΛΛΛd∥2F−2log |ΛΛΛd|+ ||νννd||2−T

)
. (3.8)

Third, q(XXX) can be sampled efficiently via a differentiable transform (i.e. the reparameterization
trick) provided that fast differentiable KKK

1
2
d vvv and ΛΛΛdvvv products are available for any vector

vvv:
xxx

(m)
d =KKK

1
2
d (νννd +ΛΛΛdηηηd) with ηηηd ∼N (000, III), (3.9)

30 Latent variable models

where xxx(m)
d ∼ q(xxxd). This is important to form a Monte Carlo estimate of Eq(XXX) [logp(YYY |XXX)].

To avoid the challenging computation of KKK
1
2
d vvv for general KKKd (Allen et al., 2000), we directly

parameterize KKK
1
2
d , the positive definite square root of KKK, which implicitly defines the prior

covariance function kd(·, ·). In this work we use an RBF kernel for KKKd and give the expression
for KKK

1
2
d in Appendix A. Additionally, we use Toeplitz acceleration methods to compute KKK

1
2
d vvv

products in O(T logT) time and with O(T) memory cost (Rutten et al., 2020; Wilson et al.,
2015).

We implement and compare different choices of ΛΛΛd in Appendix A. For the experiments
in this work, we use the parameterization ΛΛΛd = ΨΨΨdCCCd, where ΨΨΨd is diagonal with positive
entries and CCCd is circulant, symmetric, and positive definite. This parameterization enables
cheap computation of KL divergences and matrix-vector products while maintaining sufficient
expressiveness (Appendix A). All results are qualitatively similar when instead using a simple
diagonal parameterization ΛΛΛd = ΨΨΨd.

Distribution over neural activity Evaluating logp(YYY |XXX) =∑n logp(yyyn|XXX) for each sample
drawn from q(XXX) is intractable for general noise models. Thus, we further lower-bound the ELBO
of Equation 3.6 by introducing an approximation q(fffn|XXX) to the posterior p(fffn|yyyn,XXX):

logp(yyyn|XXX)≥ Eq(fffn|XXX) [logp(yyyn|fffn)]−KL [q(fffn|XXX)||p(fffn|XXX)] . (3.10)

We repeat the whitened variational strategy described at the outer level by writing

q(fffn|XXX) =N (fffn; µ̂µµn, Σ̂ΣΣn) with µ̂µµn = K̂KK
1
2 ν̂ννn and Σ̂ΣΣn = K̂KK

1
2LLLnLLL

T
n (K̂KK

1
2)T , (3.11)

where ν̂ννn ∈ RD is a neuron-specific vector of variational parameters to be optimized along with
a lower-triangular matrix LLLn ∈ RD×D; and K̂KK denotes the covariance matrix of p(fff |XXX), whose
square root K̂KK

1
2 =XXXTSSS follows from Equation 3.5. The low-rank structure of K̂KK enables cheap

matrix-vector products and KL divergences:

KL[q(fffn|XXX)||p(fffn|XXX)] = 1
2
(
∥LLLn∥2F−2log |LLLn|+ ||ν̂ννd||2−D

)
. (3.12)

Note that the KL divergence does not depend on XXX in this whitened parameterization (Ap-
pendix A). Moreover, q(fffn|XXX) in Equation 3.11 has the form of the exact posterior when the
noise model is Gaussian (Appendix A), and it is equivalent to a stochastic variational inducing
point approximation (Hensman et al., 2015a) for general noise models (Appendix A).

Finally, we need to compute the first term in Equation 3.10:

Eq(fffn|XXX) [logp(yyyn|fffn)] =
∑

t

Eq(fnt|XXX) [logp(ynt|fnt)] . (3.13)

3.1 Bayesian Gaussian process factor analysis 31

Each term in this sum is simply a 1-dimensional Gaussian expectation which can be computed
analytically in the case of Gaussian or Poisson noise (with an exponential link function), and
otherwise approximated efficiently using Gauss-Hermite quadrature (Appendix A; Hensman
et al., 2015a).

Summary of the algorithm

Putting all of our approximations together, optimization proceeds at each iteration by drawing
M Monte Carlo samples {XXXm}M1 from q(XXX) and estimating the overall ELBO as:

L= 1
M

∑
XXXm∼q(XXX)

∑
n,t

Eq(fnt|XXXm) [logp(ynt|fnt)]

−
∑

n

KL [q(fffn)||p(fffn)]−
∑

d

KL [q(xxxd)||p(xxxd)] , (3.14)

where the expectation over q(fnt|XXX) is evaluated analytically or using Gauss-Hermite quadrature
depending on the noise model (Appendix A). We maximize L using stochastic gradient ascent
with Adam (Kingma and Ba, 2014). This has a total computational time complexity of
O(MNTD2 +MDT logT) and memory complexity of O(MNTD2), where N is the number
of neurons, T the number of time points, and D the latent dimensionality. For large datasets
such as the monkey reaching data in Section 3.1.3, we compute gradients using mini-batches
across time to mitigate the memory cost. That is, gradients for the sum over t in Equation 3.14
are computed in multiple passes. The algorithm is described in pseudocode with further
implementation and computational details in Appendix A. The model learned by bGPFA can
subsequently be used for predictions on held-out data by conditioning on partial observations as
used for cross-validation in Section 3.1.3 and discussed in Appendix A. Latent dimensions that
have been ‘discarded’ by automatic relevance determination will automatically have negligible
contributions to the resulting posterior predictive distribution since the prior scale parameters
sd are approximately zero for these dimensions (see Appendix A for details).

3.1.3 Experiments and results

Synthetic data

We first generated an example dataset from the GPFA generative model (Equations 3.2-3.4)
with a true latent dimensionality of 3. We proceeded to fit both factor analysis (FA), GPFA,
and bGPFA with different latent dimensionalities D ∈ [1,10]. Here, we fitted bGPFA without
automatic relevance determination such that sd = s∀d. As expected, the marginal likelihoods
increased monotonically with D for both FA and GPFA (Figure 3.2a; Appendix A). In contrast,

32 Latent variable models

2 4 6 8 10
latent dimensionality

1.7

1.6

1.5

1.4
LL

/E
LB

O

a FA
GPFA

bGPFA (no ARD)
bGPFA (ARD)

2 4 6 8 10
latent dimensionality

1.2

1.6

2.0

2.4

M
SE

b

6 0log sd

0.0

0.5

||
d||

2 2

5.0 2.5
log sd

0.0

0.1

0.2

0.3

||
d||

2 2

c
Gaussian
Poisson
NegBinom

latent dim 1

la
te

nt
 d

im
 2

d ground truth X

0 2 4
log true

0

2

4

lo
g

in
f

e

Figure 3.2 Bayesian GPFA applied to synthetic data. (a) Log likelihoods of factor
analysis (yellow) & GPFA (green) and ELBO of Bayesian GPFA without ARD (blue) fitted to
synthetic data with a ground truth dimensionality of three for different model dimensionalities.
bGPFA with ARD recovered a three-dimensional latent space as well as the optimum ELBO
of bGPFA without ARD (black dashed line). GPFA has a higher likelihood than FA because
it includes a better prior over the latents, and GPFA has a higher likelihood than bGPFA
because it uses a maximum likelihood estimate of CCC instead of integrating over p(CCC). (b) Cross-
validated prediction errors for the models in (a) (Appendix A). bGPFA with ARD recovered the
performance of the optimal GPFA and bGPFA models without requiring a search over latent
dimensionalities. Inspection of the learned prior scales {sd} and posterior mean parameters
||νννd||22 (inset) indicates that ARD retained only D⋆ = 3 informative dimensions (top right) and
discarded the other 7 dimensions (bottom left). Shadings in (a) and (b) indicate ±2 stdev.
across 10 model fits. (c) Learned parameters of bGPFA with ARD and either Gaussian, Poisson
or negative binomial noise models fitted to two-dimensional synthetic datasets with observations
drawn from the corresponding noise models (Appendix A). The parameters clustered into two
groups of informative (top right) and non-informative (bottom left) dimensions (Appendix A).
(d) Latent trajectories in the space of the two most informative dimensions (c.f. (c)) for each
model, with the ground truth shown in black. The inferred trajectories were aligned to the
ground truth using linear transformations. (e) The overdispersion parameter κn for each neuron
learned in the negative binomial model, plotted against the ground truth (Appendix A). Solid
line indicates y = x; note that κn→∞ corresponds to a Poisson noise model.

the bGPFA ELBO reached its optimum value at the true latent dimensionality D⋆ = 3. This
is a manifestation of “Occam’s razor”, whereby fully Bayesian approaches favor the simplest
model that adequately explains the data YYY (MacKay, 2003). When instead considering the
cross-validated predictive performance of each method, performance deteriorated rapidly for
D > 3 for FA and GPFA, while Bayesian GPFA was more robust to overfitting (Figure 3.2b).
Notably, the introduction of ARD parameters {sd} in bGPFA allowed us to fit a single model

3.1 Bayesian Gaussian process factor analysis 33

with large D = 10. This recovered the maximum ELBO of bGPFA without ARD and the
minimum test error across GPFA and bGPFA without ARD (Figure 3.2a and b, black) without
a priori assumptions about the latent dimensionality or the need to perform extensive cross-
validation. Consistent with the ground truth generative process, only 3 of the scale parameters
sd remained well above zero after training (Figure 3.2b, inset). Similar to this illustrative
example with Gaussian data, bGPFA with ARD and Poisson noise also exceeded the optimal
performance of Poisson GPFA when applied to both synthetic and experimental spike count
data (Appendix A).

We then proceeded to apply bGPFA (D = 10) to an example dataset drawn using Equations 3.4
and 3.5 with a ground truth dimensionality D⋆ = 2, and either Gaussian, Poisson, or negative
binomial noise. For all three datasets, the learned parameters clustered into a group of two latent
dimensions with high information content (Appendix A) and a group of eight uninformative
dimensions, consistent with the generative process (Figure 3.2c). In each case, we extracted the
inferred latent trajectories corresponding to the informative dimensions and found that they
recapitulated the ground truth up to a linear transformation (Figure 3.2d). Fitting flexible
noise models such as the negative binomial model is important because neural firing patterns
are known to be overdispersed in many contexts (Azouz and Gray, 1999; Fenton and Muller,
1998; Tomko and Crapper, 1974). However, it is often unclear how much of that overdispersion
should be attributed to common fluctuations in hidden latent variables (XXX in our model)
compared to private noise processes in single neurons (Low et al., 2018). In our synthetic
data with negative binomial noise, we could accurately recover the single-neuron overdispersion
parameters (Figure 3.2e; Appendix A), suggesting that such unsupervised models have the
capacity to resolve overdispersion due to private and shared processes.

In summary, bGPFA provides a flexible method for inferring both latent dimensionalities, latent
trajectories, and heterogeneous single-neuron parameters in an unsupervised manner. In the
next section, we show that the scalability of the model and its interpretable parameters also
facilitate the analysis of large neural population recordings.

Primate recordings

In this section, we apply bGPFA to biological data recorded from a rhesus macaque during a
self-paced reaching task with continuous recordings spanning 30 minutes (Makin et al., 2018;
O’Doherty et al., 2017; Figure 3.3a). The continuous nature of these recordings as one long
trial makes it a challenging dataset for existing analysis methods that explicitly require the
availability of many trials per experimental condition (Pandarinath et al., 2018), and poses
computational challenges to Gaussian process-based methods that cannot handle long time
series (Yu et al., 2009). While the ad-hoc division of continuous recordings into surrogate trials
can still enable the use of these methods (Keshtkaran et al., 2021), here we show that our

34 Latent variable models

formulation of bGPFA readily applies to long continuous recordings. We fitted bGPFA with a
negative binomial noise model to recordings from both primary motor cortex (M1) and primary
somatosensory cortex (S1). For all analyses, we used a single recording session (indy_20160426,
as in Keshtkaran et al., 2021), excluded neurons with overall firing rates below 2 Hz, and binned
data at 25 ms resolution. This resulted in a data array YYY ∈R200×70482 (130 M1 neurons and 70
S1 neurons).

We first fitted bGPFA independently to the M1 and S1 sub-populations with D = 25 latent
dimensions. In this case, ARD retained 16 (M1) and 12 (S1) dimensions (Figure 3.3b). We then
proceeded to train a linear decoder to predict hand kinematics in the form of x and y hand
velocities from either the inferred firing rates or the raw data convolved with a 50 ms Gaussian
kernel (Keshtkaran et al., 2021; Appendix A). We found that the model learned by bGPFA
predicted kinematics better than the convolved spike trains, suggesting that (i) the latent space
accurately captures kinematic representations, and (ii) the denoising and data-sharing across
time in bGPFA aids decodability beyond simple smoothing of neural activity. Interestingly, by
repeating this decoding analysis with an artificially imposed delay between neural activity and
decoded behavior, we found that neurons in S1 predominantly encoded current behavior while
neurons in M1 encoded a motor plan that predicted kinematics 100-150 ms into the future
(Figure 3.3b). This is consistent with the motor neuroscience literature suggesting that M1
functions as a dynamical system driving behavior via downstream effectors (Churchland et al.,
2012).

We then fitted bGPFA to the entire dataset including both M1 and S1 neurons. In this
case, bGPFA retained 19 dimensions (Appendix A), and kinematic predictions improved
over individual M1- and S1-based predictions (Figure 3.3b). In this analysis, the decoding
performance as a function of delay between neural activity and behavior exhibited a broader
peak than for the single-region decoding. We hypothesized that this broad peak reflects the fact
that these neural populations encode both current behavior in S1 as well as future behavior in
M1 (Figure 3.3c). Indeed, when we took this offset into account by shifting all M1 spike times
by +100 ms and retraining the model, decoding performance increased from 68.56%±0.09 to
69.81%±0.06 (mean ± sem variance explained across ten model fits; Appendix A). Additionally,
the shifted data exhibited a narrower decoding peak attained for near-zero delay between
kinematics and latent trajectories (Figure 3.3d). Consistent with the improved kinematic
decoding, we also found that shifting the M1 spikes by 100 ms increased the ELBO per neuron
(−34,637.0±0.7 to −34,631.1±0.6) and decreased the dimensionality of the data (Appendix A;
Recanatesi et al., 2019). These results suggest that M1 and S1 contain both overlapping but
also non-redundant information, and that the most parsimonious description of the neural data
is recovered by taking into account the different biological properties of M1 and S1.

We next wondered if bGPFA could be used to reveal putative motor preparation processes,
which is non-trivial due to the lack of trial structure and well-defined preparatory epochs.

3.1 Bayesian Gaussian process factor analysis 35

a

1

2

task structure

0 200
delay (ms)

0.1

0.3

0.5

0.7

va
ria

nc
e

ca
pt

ur
ed

c
M1
S1

0 200
delay (ms)

0.1

0.3

0.5

0.7

va
ria

nc
e

ca
pt

ur
ed

d

M1 & S1
100ms shift

8 6 4 2
log sd

0.0

0.2

0.4

0.6

||
d||

2 2

b
M1
S1
M1 & S1
100ms shift

latent dim 1

la
te

nt
 d

im
 2

e

right
left

reach direction

re
ac

h
di

re
ct

io
n

f target onset

reach direction

pre-movement

m
in sim

.
m

ax sim
.

distance to prep (a.u.)
125

425

re
ac

tio
n

tim
e

(m
s)

g

Figure 3.3 Bayesian GPFA applied to primate data. (a) Schematic illustration of the
self-paced reaching task. When a target on a 17x8 grid is reached (arrows; 8x8 shown for clarity),
a new target lights up on the screen (colours), selected at random from the remaining targets. In
several analyses, we classify movements according to reach angle measured relative to horizontal
(θ1, θ2). (b) Learned mean and scale parameters for the bGPFA models. Small prior scales
sd and posterior mean parameters (||νννd||22) indicate uninformative dimensions (Appendix A).
(c) We applied bGPFA to monkey M1 and S1 data during the task and trained a linear model to
decode kinematics from firing rates predicted from the inferred latent trajectories with different
delays between latent states and kinematics. Neural activity was most predictive of future
behavior in M1 (black) and current behavior in S1 (blue). Dashed lines indicate decoding
from the raw data convolved with a Gaussian filter. (d) Decoding from bGPFA applied to
the combined M1 and S1 data (cyan). Performance improved further when decoding from
latent trajectories inferred from data where M1 activity was shifted by 100 ms relative to S1
activity (green). (e) Example trajectories in the two most informative latent dimensions for
five rightward reaches (grey) and five leftward reaches (red). Trajectories are plotted from the
appearance of the stimulus until movement onset (circles). During ‘movement preparation’, the
latent trajectories move towards a consistent region of latent state space for each reach direction.
(f) Similarity matrix of the latent state at stimulus onset showing no obvious structure (left)
and 75 ms prior to movement onset showing modulation by reach direction (right). (g) Reaction
time plotted against Euclidean distance between the latent state at target onset and the mean
preparatory state for the corresponding reach direction (ρ= 0.45).

We partitioned the data post-hoc into individual ‘reaches’, each consisting of a period of
time where the target location remained constant. For these analyses, we only considered
‘successful’ reaches, where the monkey eventually moved to the target location, and we defined
movement onset as the first time during a reach where the cursor speed exceeded a low threshold
(Appendix A). We began by visualizing the latent processes inferred by bGPFA as they unfolded

36 Latent variable models

prior to movement onset in each reach epoch. For visualization purposes, we ranked the latent
dimensions based on their learned prior scales (a measure of variance explained; Appendix A)
and selected the first two. Prior to movement onset, the latent trajectories tended to progress
from their initial location at target onset towards reach-specific regions of state space (see
example trials in Figure 3.3e for leftward and rightward reaches). To quantify this phenomenon,
we computed pairwise similarities between latent states across all 762 reaches, during (i)
stimulus onset and (ii) 75 ms before movement onset (chosen such that it is well before any
detectable movement; Appendix A). We defined similarity as the negative Euclidean distance
between latent states and restricted the analysis to ‘fast’ latent dimensions with timescales
smaller than 200 ms to study this putatively fast process. When plotted as a function of reach
direction, the latent similarities at target onset showed little discernable structure (Figure 3.3f,
left). In contrast, the pairwise similarities became strongly structured 75 ms before movement
onset where neighboring reach directions were associated with similar preparatory latent states
(Figure 3.3f, right). Similar albeit noisier results were found when using factor analysis or GPFA
instead of bGPFA (Appendix A). These findings are consistent with previous reports of monkey
M1 partitioning preparatory and movement-related activity into distinct subspaces (Elsayed
et al., 2016; Lara et al., 2018), as well as with the analogous finding that a ‘relative target’
subspace is active before a ‘movement subspace’ in previous analyses of this particular dataset
(Keshtkaran et al., 2021).

Previous work on delayed reaches has shown that monkeys start reaching earlier when the
neural state attained at the time of the go cue – which marks the end of a delay period with
a known reach direction – is close to an “optimal subspace” (Afshar et al., 2011; Kao et al.,
2021b). We wondered if a similar effect takes place during continuous, self-initiated reaching in
the absence of explicit delay periods. Based on Figure 3.3e, we hypothesized that the monkey
should start moving earlier if, at the time the next target is presented, its latent state is already
close to the mean preparatory state for the required next movement direction. To test this,
we extracted the mean preparatory state 75 ms prior to movement onset (as above) for each
reach direction in the dataset. We found that the distance between the latent state at target
onset and the corresponding mean preparatory state was strongly predictive of reaction time
(Figure 3.3g, Pearson ρ= 0.45, p= 4×10−36). Such a correlation was also weakly present with
factor analysis (ρ= 0.21, p= 1.1×10−8) but not detectable in the raw data (ρ= 0.002, p= 0.95).
We also verified that the strong correlation found with bGPFA was not an artifact of the
temporal correlations introduced by the prior (Appendix A). Taken together, our results suggest
that motor preparation is an important part of reaching movements even in an unconstrained
self-paced task. Additionally, we showed that bGPFA captures such behaviorally relevant latent
dynamics better than simpler alternatives, and our scalable implementation enables its use on
the large continuous reaching dataset analysed here.

3.1 Bayesian Gaussian process factor analysis 37

Long-timescale latent processes

Some latent dimensions inferred by bGPFA also had long timescales on the order of 1.5
seconds, which is similar to the timescale of individual reaches (1-2 seconds; Appendix A). We
hypothesized that these slow dynamics might reflect motivation or task engagement. Consistent
with this hypothesis, we found that one of the slow latent processes (τ = 1.4 s) was strongly
correlated with reaction time during successful reaches (Pearson ρ = 0.40, p = 3.4× 10−28).
Interestingly, the information contained about reaction time in this long timescale latent
dimension was largely complementary to that encoded by the distance to preparatory states in
the ‘fast’ dimensions (Appendix A), suggesting that motor preparation and task engagement
are orthogonal processes both contributing to task performance.

The experimental recordings were also characterized by a period of approximately five minutes
towards the end of the recording session during which the monkey did not participate actively in
the task and the cursor velocity was near-constant at zero (Figure 3.4a). When analysing neural
activity across the periods with and without task participation, we found that neural dynamics
moved to a different subspace as the monkey stopped engaging with the task (Figure 3.4b).
Importantly, we were able to simultaneously capture these context-dependent changes as well
as movement-specific and preparatory dynamics (Section 3.1.3) by fitting a single model to the
full 30 minute dataset. This suggests that bGPFA can capture behaviorally relevant dynamics
within individual contexts even when trained on richer datasets with changing contexts.

Finally, we wondered how the neural activity patterns during periods with and without task
participation were related to the long-timescale latent dimensions predictive of task engagement.
Here we found that the slow latent process considered above also exhibited a prominent change
to a different state as the monkey stopped participating in the task (Figure 3.4c). This is
consistent with our hypothesis that this latent process captures a feature related to task
engagement, which slowly deteriorated during the first 24 minutes of the task followed by a
discrete switch to a state with no engagement in the task. During the period of active task
participation, this latent dimension was also correlated with time within the session. Indeed,
reach number and latent state were both predictive of reaction time, but with the latent
trajectory exhibiting a slightly stronger correlation (Pearson ρ= 0.40 vs. ρ= 0.37). It is not
surprising that task engagement decreases with time, and it is in this case difficult to tease
apart how motivation and time are differentially represented in such latent processes. However,
based on the strong and abrupt modulation by task participation, this latent dimension appears
to represent an aspect of engagement with the task beyond the passing of time.

Taken together, we thus find that bGPFA is capable of capturing not only single-reach dynamics
and preparatory activity but also complementary processes evolving over longer timescales,
which would be difficult to identify with methods designed for the analysis of many shorter
trials.

38 Latent variable models

0 5 10 15 20 25
time (minutes)

0.0

0.2

0.4

0.6

0.8

sp
ee

d
(m

/s
)

a

0 10 20
time (minutes)

0

5

10

15

20

25

tim
e

(m
in

ut
es

)

b

0 5 10 15 20 25
time (minutes)

la
te

nt
 st

at
e

(a
.u

.)

c

Figure 3.4 Analysis of a period without task participation. (a) Cursor speed over the
course of the recording session. Blue horizontal lines indicate the last successful trial before and
first successful trial after a period with no active task participation (blue shading). (b) Latent
similarity matrix as a function of time during the task. The latent dynamics during task
participation occur in a largely orthogonal subspace to the dynamics during the period with no
active task participation. (c) Plot of latent state over time for a long-timescale latent dimension
strongly correlated with reaction time (τ = 1.4 s).

3.1.4 Discussion

Related work The generative model of bGPFA can be considered an extension of the
canonical GPFA model proposed by Yu et al. (2009) to include a Gaussian prior over the
loading matrix CCC (Section 3.1.2). In this view, bGPFA is to GPFA what Bayesian PCA
is to PCA (Bishop, 1999); in particular, it facilitates automatic relevance determination to
infer the dimensionality of the latent space from data (Bishop, 1999; Neal, 2012; Titsias and
Lawrence, 2010). Similar to previous work in the field, we also use variational inference to
facilitate arbitrary observation noise models, including non-Gaussian models more appropriate
for electrophysiological recordings (Duncker and Sahani, 2018; Keeley et al., 2020a; Liu and
Lengyel, 2021; Schimel et al., 2021; Zhao and Park, 2017; Zhao et al., 2020). While variational
inference has proven a useful framework for such non-conjugate likelihood models, alternative
approaches exist including the use of polynomial approximations to the non-linear terms in the
likelihood (Keeley et al., 2020b). Another major challenge in the development of GP-based
latent variable models such as bGPFA is to ensure scalability for longer time series. In this work,
we utilize advances in variational inference (Kingma and Welling, 2013; Rezende et al., 2014)
to facilitate scalability to the large datasets recorded in modern neuroscience. In particular, we
contribute a new circulant variational GP posterior expressed partly in the Fourier domain that
is both accurate and scalable. This is similar to Keeley et al. (2020a), who address the problem
of scalability by assuming independence across Fourier features and formulating variational
inference in the Fourier domain. However, we instead perform inference in the time domain and
include additional factors in our variational posterior that ensure smoothness over time and
allow for non-stationary posterior covariances. In contrast to these approaches, Zhao and Park
(2017) rely on a low rank approximation to the prior covariance for inference and temporal

3.1 Bayesian Gaussian process factor analysis 39

subsamples for hyperparameter optimization to overcome the computational cost of model
training. A conceptually similar approach employed by Duncker and Sahani (2018) is the
use of inducing points, which has been studied extensively in the Gaussian process literature
(Hensman et al., 2013, 2015a; Titsias, 2009). However, such low rank approximations can
perform poorly on long time series where the number of inducing points needed is proportional
to the recording duration (Chang et al., 2020).

bGPFA is also closely related to Gaussian process latent variable models (GPLVMs; Lawrence,
2005; Titsias and Lawrence, 2010; Section 2.2), which have recently found use in the neuroscience
literature as a way of modelling flexible, non-linear tuning curves (Jensen et al., 2020; Liu
and Lengyel, 2021; Wu et al., 2017a). This is because integrating out the loading matrix
CCC in p(YYY |XXX) with a Gaussian prior gives rise to a Gaussian process with a linear kernel.
The low-rank structure of this linear kernel yields computationally cheap likelihoods, and
our variational approach to estimating logp(YYY |XXX) is in fact equivalent to the sparse inducing
point approximation used in the stochastic variational GP (SVGP) framework (Hensman et al.,
2013, 2015a). In particular, our variational posterior is the same as that which would arise in
SVGP with at least D inducing points irrespective of where those inducing points are placed
(Appendix A). We also note that for a Gaussian noise model, the resulting low-rank Gaussian
posterior is the form of the exact posterior distribution (Appendix A). Additionally, since the
bGPFA observation model and prior over latents are both GPs, bGPFA is an example of a deep
GP (Damianou and Lawrence, 2013) with two layers – the first with an RBF kernel and the
second with a linear kernel. Finally, our parameterizations of the posteriors q(xxxd) and q(fffn)
can be viewed as variants of the ‘whitening’ approach introduced by Hensman et al. (2015b),
which both facilitates efficient computation of the KL terms in the ELBOs and also stabilizes
training (Section 3.1.2).

Conclusion In summary, bGPFA is an extension of the popular GPFA model in neuroscience
that allows for regularized, scalable inference and automatic determination of the latent
dimensionality as well as the use of non-Gaussian noise models appropriate for neural recordings.
Importantly, the hyperparameters of bGPFA are efficiently optimized based on the ELBO on
training data, which alleviates the need for cross-validation or complicated algorithms otherwise
used for hyperparameter optimization in overparameterized models (Gao et al., 2016; Jensen
et al., 2020; Keshtkaran and Pandarinath, 2019; Keshtkaran et al., 2021; Wu et al., 2017a; Yu
et al., 2009). Our approach can also be extended to make it more useful to the neuroscience
community. For example, replacing the spike count-based noise models with a point process
model would provide higher temporal resolution (Duncker and Sahani, 2018), and facilitate
inference of optimal temporal delays across neural populations (Lakshmanan et al., 2015). This
will likely be useful as multi-region recordings become more prevalent in neuroscience (Keeley
et al., 2020c).

40 Latent variable models

3.2 Manifold Gaussian process latent variable models

This section has been peer reviewed and published as Jensen et al. (2020).

3.2.1 Introduction

As we have seen in several previous sections (Section 2.2, Section 3.1), it is common to use
‘weak’ Bayesian models to project high-dimensional neural data into lower-dimensional latent
spaces as a first step towards linking neural activity to behaviour (Cunningham and Byron,
2014). As discussed in Section 2.2, this can be done using a variety of linear methods such as
PCA or factor analysis (Cunningham and Ghahramani, 2015), or non-linear dimensionality
reduction techniques such as tSNE (Maaten and Hinton, 2008). However, all these models
project data into Euclidean latent spaces, thus failing to capture the inherent non-Euclidean
nature of variables such as head direction, rotational motor plans, or grid cells (Bjerke et al.,
2022; Chaudhuri et al., 2019; Finkelstein et al., 2015; Gardner et al., 2022; Seelig and Jayaraman,
2015; Wilson et al., 2018).

Most models in neuroscience assume that neurons are smoothly tuned to internal or external
variables of interest (Stringer et al., 2019). As an example, a population of neurons representing
an angular variable θ would respond similarly to some θ and to θ+ ϵ (for small ϵ). While
it is straigthforward to model such smoothness by introducing smooth priors for response
functions defined over R, the activity of neurons modelled this way would exhibit a spurious
discontinuity as the latent angle changes from 2π to 0+ ϵ. We see that appropriately modelling
smooth neuronal representations requires keeping the latent variables of interest on their natural
manifold (here, the circle), instead of an ad-hoc Euclidean space. While periodic kernels have
commonly been used to address such problems in GP regression (MacKay, 1998), topological
structure has not been incorporated into GP-based latent variable models due to the difficulty
of doing inference in such spaces.

Here, we build on recent advances in non-Euclidean variational inference (Falorsi et al., 2019) to
develop the manifold Gaussian process latent variable model (mGPLVM), an extension of the
GPLVM framework (Lawrence, 2005; Titsias and Lawrence, 2010; Wu et al., 2018, 2017a) to
non-Euclidean latent spaces including tori, spheres and SO(3) (Figure 3.5). mGPLVM jointly
learns the fluctuations of an underlying latent variable g and a probabilistic “tuning curve”
p(fi|g) for each neuron i. The model therefore provides a fully unsupervised way of querying
how the brain represents its surroundings and a readout of the relevant latent quantities.
Importantly, the probabilistic nature of the model enables principled model selection between
candidate manifolds, similar to how the ELBO was implicitly used for model selection across
dimensionalities in Bayesian GPFA (Section 3.1). In this section, we provide a framework for
scalable training and inference with mGPLVM, and we validate the model on both synthetic
and experimental datasets.

3.2 Manifold Gaussian process latent variable models 41

Generative Model

latent states onM
gj ∼ pM(g)

tuning curves

N neurons

M conditions

fi (g) ∼ GP(0, kM
i (g, g′))

neural activity

yij |gj ∼ N (fi (gj),σ2
i)

Inference

inferred latent states

condition j

inferred tuning curves

neuron i

neural activity

Figure 3.5 Schematic illustration of the manifold Gaussian process latent variable
model (mGPLVM). In the generative model (left), neural activity arises from (i) M latent
states {gj} on a manifold M, each corresponding to a different condition j (e.g. time or
stimulus), and (ii) the tuning curves of N neurons, modelled as Gaussian processes and sharing
the same latent states {gj} as inputs. Using variational inference, mGPLVM jointly infers the
global latent states and the tuning curve of each neuron on the manifold (right).

3.2.2 Method

The main contribution of this section is mGPLVM, a Gaussian process latent variable model
(Titsias and Lawrence, 2010; Wu et al., 2018) defined for non-Euclidean latent spaces. We
first present the generative model (Section 3.2.2), then explain how we perform approximate
inference using reparameterizations on Lie groups (Falorsi et al., 2019; Section 3.2.2). Lie
groups include Euclidean vector spaces Rn as well as other manifolds of interest to neuroscience
such as tori Tn (Chaudhuri et al., 2019; Rubin et al., 2019) and the special orthogonal group
SO(3) (Finkelstein et al., 2015; Wilson et al., 2018; extensions to non-Lie groups are discussed
in Appendix B). We then provide specific forms for variational densities and kernels on tori,
spheres, and SO(3) (Section 3.2.2). Finally we validate the method on both synthetic data
(Section 3.2.3), calcium recordings from the fruit fly head direction system (Section 3.2.3), and
extracellular recordings from the mouse anterodorsal thalamic nucleus (Appendix B).

Generative model

Let YYY ∈ RN×M be the activity of N neurons recorded in each of M conditions. Examples of
“conditions” include time within a trial, stimulus identity, or motor output. We assume that
all neuronal responses collectively encode a shared, condition-specific latent variable gj ∈M,
where M is some manifold. We further assume that each neuron i is tuned to the latent state
g with a “tuning curve” fi(g), describing its average response conditioned on g. Rather than
assuming a specific parametric form for these tuning curves, we place a Gaussian process prior
on fi(·) to capture the heterogeneity widely observed in biological systems (Churchland and

42 Latent variable models

Shenoy, 2007; Hardcastle et al., 2017). The model is depicted in Figure 3.5 and can be formally
described as:

gj ∼ pM(g) (prior over latents) (3.15)
fi ∼ GP(0,kM

i (·, ·)) (prior over tuning curves) (3.16)
yij |gj ∼N (fi(gj),σ2

i) (noise model) (3.17)

In Equation 3.15, we use a uniform prior pM(g) inversely proportional to the volume of
the manifold for bounded manifolds (Appendix B; see Jensen et al., 2022b for extensions
to temporally correlated priors), and a Gaussian prior on Euclidean spaces to set a basic
lengthscale. In Equation 3.16, kM

i (·, ·) :M×M→ R is a covariance function defined on
manifold M – manifold-specific details are discussed in Section 3.2.2. In the special case where
M is a Euclidean space, this model is equivalent to the standard Bayesian GPLVM (Titsias
and Lawrence, 2010). While Equation 3.17 assumes independent noise across neurons, noise
correlations can also be introduced as in (Wu et al., 2018) and Poisson noise as in (Wu et al.,
2017a).

This probabilistic model can be fitted by maximizing the log marginal likelihood

logp(YYY) = log
∫
p(YYY |{fi},{gj})p({fi}) pM({gj}) d{fi}d{gj}. (3.18)

Following optimization, we can query both the posterior over latent states p({gj}|YYY) and the
posterior predictive distribution p(YYY ⋆|G⋆,YYY) at a set of query states G⋆. While it is possible to
marginalise out fi when the states {gj} are known, further marginalising out {gj} is intractable,
and maximizing Equation 3.18 requires approximate inference.

Learning and inference

To maximize logp(YYY) in Equation 3.18, we use variational inference as previously proposed for
GPLVMs (Titsias and Lawrence, 2010; Section 2.3). The true posterior over the latent states,
p({gj}|Y), is approximated by a variational distribution qφ({gj}) with parameters φ that are
optimized to minimize the KL divergence between qφ({gj}) and p({gj}|YYY). This is equivalent
to maximizing the evidence lower bound (ELBO) on the log marginal likelihood:

L(φ) =H(qφ)+Eqφ
[logpM({gj})]+Eqφ

[logp(YYY |{gj})]. (3.19)

Here, Eqφ
[·] indicates averaging over the variational distribution and H(qφ) is its entropy. For

simplicity, and because our model does not specify a priori statistical dependencies between
the individual elements of {gj}, we choose a variational distribution qφ that factorizes over

3.2 Manifold Gaussian process latent variable models 43

conditions:

qφ({gj}) =
M∏

j=1
qφj

(gj). (3.20)

In the Euclidean case, the entropy and expectation terms in Equation 3.19 can be calculated
analytically for some kernels (Titsias and Lawrence, 2010), and otherwise using the reparameter-
ization trick (Kingma and Welling, 2013; Rezende et al., 2014). Briefly, the reparameterization
trick involves first sampling from a fixed, easy-to-sample distribution (e.g. a normal distribution
with zero mean and unit variance), and applying a series of differentiable transformations to
obtain samples from qφ (Section 2.3). We can then use these samples to estimate the entropy
term and expectations in Equation 3.19.

For non-Euclidean manifolds, inference in mGPLVM poses two major problems. Firstly, we can
no longer calculate the ELBO analytically nor evaluate it using the standard reparameterization
trick. Secondly, evaluating the Gaussian process log marginal likelihood logp(YYY |{gj}) exactly
becomes computationally too expensive for large datasets. We address these issues in the
following.

Reparameterizing distributions on Lie groups To estimate and optimize the ELBO in
Equation 3.19 when qφ is defined on a non-Euclidean manifold, we use Falorsi et al.’s ReLie
framework, an extension of the standard reparameterization trick to variational distributions
defined on Lie groups.

Sampling from qφ Since we assume that qφ factorizes (Equation 3.20), sampling from
qφ is performed by independently sampling from each qφj

. We start from a differentiable
base distribution rφj

(xxx) in Rn. Note that Rn is isomorphic to the tangent space at the
identity element of the group G, known as the Lie algebra. We can thus define a ‘capitalized’
exponential map ExpG : Rn→ G, which maps elements of Rn to elements in G (Sola et al.,
2018; Appendix B).

Importantly, ExpG maps a distribution centered at zero in Rn to a distribution q̃φj
in the group

centered at the identity element. To obtain samples from a distribution qφj
centered at an

arbitrary gµ
j in the group, we can simply apply the group multiplication with gµ

j to samples from
q̃φj

. Therefore, obtaining a sample gj from qφj
involves the following steps: (i) sample from

rφj
(xxx), (ii) apply ExpG to obtain a sample g̃j from q̃φj

, and (iii) apply the group multiplication
gj = gµ

j g̃j .

44 Latent variable models

Estimating the entropy H(qφ) Since H(qφj
) = H(q̃φj

) (Falorsi et al., 2019), we use K
independent Monte Carlo samples from q̃φ(·) =∏M

j=1 q̃φj
(·) to calculate

H(qφ)≈− 1
K

K∑
k=1

M∑
j=1

log q̃φj
(g̃jk), (3.21)

where g̃jk = ExpGxxxjk and {xxxjk ∼ rφj
(xxx)}Kk=1.

Evaluating the density q̃φ To evaluate log q̃φj
(ExpGxxxjk), we use the result from Falorsi

et al. (2019) that
q̃φ(g̃) =

∑
xxx∈Rn : ExpG(xxx)=g̃

rφ(xxx)|JJJ(xxx)|−1, (3.22)

where JJJ(xxx) is the Jacobian of ExpG at xxx. Thus, q̃φ(g̃) is the sum of the Jacobian-weighted
densities rφ(xxx) in Rn at all those points that are mapped to g̃ through ExpG. This is an
infinite but converging sum, and following Falorsi et al. (2019) we approximate it by its first
few dominant terms (Appendix B).

Note that ExpG(·) and the group multiplication by gµ are both differentiable operations.
Therefore, as long as we choose a differentiable base distribution rφ(xxx), we can perform end-
to-end optimization of the ELBO. In this work we choose the reference distribution to be a
multivariate normal rφj

(xxx) =N (xxx;0,ΣΣΣj) for each qφj
. We variationally optimize both {ΣΣΣj} and

the mean parameters {gµ
j } for all j, and together these define the variational distribution.

Sparse GP approximation To efficiently evaluate the Eqφ
[logp(YYY |{gj})] term in the ELBO

for large datasets, we use the variational sparse GP approximation (Titsias, 2009), which has
previously been applied to Euclidean GPLVMs (Titsias and Lawrence, 2010). Specifically, we
introduce a set of m inducing points Zi for each neuron i, and use a lower bound on the GP
log marginal likelihood:

logp(yyyi|{gj})≥−
1
2y
yyT

i (QQQi +σ2
i III)−1yyyi−

1
2 log |QQQi +σ2

i III|−
1

2σ2 Tr(KKKi−QQQi)+ const.︸ ︷︷ ︸
log p̃(yyyi|{gj})

(3.23)

with QQQi =KKK{gj}Zi
KKK−1

ZiZi
KKKZi{gj}. (3.24)

Here, KKKAB denotes the Gram matrix associated with any two input sets A and B. Note that the
latents {gj} are shared across all neurons. In this work, we optimize the inducing points on G

directly, but they could equivalently be optimized in Rn and projected onto G via ExpG.

Using the sparse GP framework, the cost of computing the GP likelihood reduces to O(Mm2) for
each neuron and Monte Carlo sample. This leads to an overall complexity of O(KNMm2) for

3.2 Manifold Gaussian process latent variable models 45

approximating Eqφ
[logp(YYY |{gj})] with K Monte Carlo samples, N neurons, M conditions and m

inducing points (see Appendix B for further details on complexity and implementation).

Optimization We are now equipped to optimize the ELBO defined in Equation 3.19 using
Monte Carlo samples drawn from a variational distribution qφ defined on a Lie group G. To
train the model, we use Adam (Kingma and Ba, 2014) to perform stochastic gradient descent
on the following loss function:

L(φ) = 1
K

K∑
k=1

 M∑
j=1

(
logpM(gjk)− log q̃φj

(g̃jk)
)
−

N∑
i

log p̃(yyyi|{gjk})

 , (3.25)

where a set of K Monte-Carlo samples {g̃jk}Kk=1 is drawn at each iteration from {q̃φj
} as

described in Section 3.2.2. In Equation 3.25, gjk = gµ
j g̃jk, where gµ

j is a group element that is
optimized together with all other model parameters. Finally, log p̃(yyyi|{gj}) is the lower bound
defined in Equation 3.23, and pM(gjk) is the prior described in Section 3.2.2. The inner sums
run over conditions j and neurons i.

Posterior over tuning curves We approximate the posterior predictive distribution over
tuning curves by sampling from the (approximate) posterior over latents. Specifically, for a
given neuron i and a set of query states G⋆, the posterior predictive over fff⋆

i is approximated
by:

p(fff⋆
i |YYY ,G⋆) = 1

K

K∑
k=1

p(fff⋆
i |G⋆,{Gk,YYY }), (3.26)

where each Gk is a set of M latent states (one for each condition in YYY) independently drawn
from the variational posterior qφ(·). In Equation 3.26, each term in the sum is a standard
Gaussian process posterior (Rasmussen and Williams, 2006), which we approximate as described
above (Section 3.2.2; Appendix B; Titsias, 2009).

Applying mGPLVM to tori, spheres and SO(3)

At this stage, we have yet to define the manifold-specific GP kernels kM described in Section 3.2.2.
These kernels ought to capture the topology of the latent space and express our prior assumptions
that the neuronal tuning curves, defined on the manifold, have certain properties such as
smoothness. Here we take inspiration from the common squared exponential covariance
function defined over Euclidean spaces and introduce analogous kernels on tori, spheres, and
SO(3). This leads to the following general form:

kM(g,g′) = α2 exp
(
−dM(g,g′)

2ℓ2
)

g,g′ ∈M, (3.27)

46 Latent variable models

where α2 is a variance parameter, ℓ is a characteristic lengthscale, and dM(g,g′) is a manifold-
specific distance function. While squared geodesic distances might be intuitive choices for d(·, ·)
in Equation 3.27, they result in positive semi-definite (PSD) kernels only for Euclidean latent
spaces (Feragen et al., 2015; Jayasumana et al., 2015). Therefore, we build distance functions
that automatically lead to valid covariance functions by observing that (i) dot product kernels
are PSD, and (ii) the exponential of a PSD kernel is also PSD. Specifically, we use the following
manifold-specific dot product-based distances:

dRn(g,g′) = ||g−g′||22 g ∈ Rn (3.28)
dSn(g,g′) = 2(1−g ·g′) g ∈ {xxx ∈ Rn+1; ∥xxx∥= 1} (3.29)
dT n(g,g′) = 2∑k (1−gk ·g′

k) g ∈ {(g1, · · · ,gn); ∀k : gk ∈ R2,∥gk∥= 1} (3.30)

dSO(3)(g,g′) = 4
[
1−

(
g ·g′)2] g ∈ {xxx ∈ R4; ∥xxx∥= 1} (3.31)

Here, we have slightly abused notation by directly using “g” to denote a convenient parameteri-
sation of the group elements which we define on the right of each equation. To build intuition,
we note that the distance metric on the torus gives rise to a multivariate von Mises function; the
distance metric on the sphere leads to an analogous von Mises Fisher function; and the distance
metric on SO(3) is 2(1− cosϕrot) where ϕrot is the angle of rotation required to transform g

into g′. Notably, all these distance functions reduce to the Euclidean squared exponential kernel
in the small angle limit. Laplacian (Feragen et al., 2015) and Matérn (Borovitskiy et al., 2020)
kernels have previously been proposed for modelling data on Riemannian manifolds, and these
can also be incorporated in mGPLVM.

Finally, we provide expressions for the variational densities (Equation 3.22) defined on tori, S3

and SO(3):

q̃φ(ExpT nxxx) =
∑

kkk∈Zn

rφ(xxx+2πkkk), (3.32)

q̃φ(ExpSO(3)xxx) =
∑
k∈Z

[
rφ(xxx+πkx̂xx) 2∥xxx+πkx̂xx∥2

1− cos(2∥xxx+πkx̂xx∥)

]
, (3.33)

q̃φ(ExpS3xxx) =
∑
k∈Z

[
rφ(xxx+2πkx̂xx) 2∥xxx+2πkx̂xx∥2

1− cos(2∥xxx+2πkx̂xx∥)

]
, (3.34)

where x̂xx = xxx/∥xxx∥. Further details and the corresponding exponential maps are given in
Appendix B. Since spheres that are not S1 or S3 are not Lie groups, ReLie does not provide a
general framework for mGPLVM on these manifolds, which we therefore treat separately in
Appendix B.

3.2 Manifold Gaussian process latent variable models 47

0

π

2π

0 π 2π

ne
ur

on
s

time

time

time

raw data

inferred latents tuning curves

ordered data

mGPLVM

Figure 3.6 Applying mGPLVM to
synthetic data on the ring T 1. Top
left: neural activity of 100 neurons
at 100 different conditions (here, time
bins). Bottom: timecourse of the la-
tent states (left) and tuning curves for
12 representative neurons (right). Green:
ground truth; Black: posterior mean;
Grey shaded regions: ±2 posterior s.t.d.
Top right: data replotted from the top
left panel, with neurons reordered ac-
cording to their preferred angles as de-
termined by the inferred tuning curves.

3.2.3 Experiments and results

In this section, we start by demonstrating the ability of mGPLVM to correctly infer latent
states and tuning curves in non-Euclidean spaces using synthetic data generated on T 1, T 2 and
SO(3). We also verify that cross-validated model comparison correctly recovers the topology of
the underlying latent space, suggesting that mGPLVM can be used for model selection given a
set of candidate manifolds. Finally, we apply mGPLVM to a biological dataset to show that it
is robust to the noise and heterogeneity characteristic of experimental recordings.

Synthetic data

To generate synthetic data Y, we specify a target manifold M, draw a set of M latent states
{gj} on M, and assign a tuning curve to each neuron i of the form

fi(g) = a2
i exp

(
−
d2

geo(g,gpref
i)

2b2
i

)
+ ci, (3.35)

yij |gj ∼N (fi(gj),σ2
i) (3.36)

with random parameters ai, bi and ci. Thus, the activity of each neuron is a noisy bell-shaped
function of the geodesic distance onM between the momentary latent state gj and the neuron’s
preferred state gpref

i (sampled uniformly). While this choice of tuning curves is inspired by the
common ‘Gaussian bump’ model of neural tuning, we emphasize that the non-parametric prior
over fi in mGPLVM can discover any smooth tuning curve on the manifold, not just Gaussian
bumps. For computational simplicity, here we constrain the mGPLVM parameters αi, ℓi and σi

to be identical across neurons. Note that we can only recover the latent space up to symmetries
which preserve pairwise distances. In all figures, we have therefore aligned model predictions
and ground truth for ease of visualization (Appendix B).

48 Latent variable models

Figure 3.7 Validating mGPLVM on synthetic data. (a-c) Torus dataset. (a) True latent
states {gj ∈ T 2} (dots) and posterior latent means {gµ

j } (crosses). The color scheme is chosen
to be smooth for the true latents. (b) Posterior tuning curves for two example neurons. Top:
tuning curves on the tori. Bottom: projections onto the periodic [0;2π] plane. Black circles
indicate locations and widths of the true tuning curves. (c) Mean squared cross-validated
prediction error (left) and negative log likelihood (right) when fitting T 2 and R2 to data
generated on T 2. Dashed lines connect datapoints for the same synthetic dataset. (d-f) SO(3)
dataset. (d) Axis of the rotation represented by the true latent states {gj ∈ SO(3)} (dots) and
the posterior latent means {gµ

j } (crosses) projected onto the (ϕ, θ)-plane. (e) Magnitude of
the rotations represented by {gj} and {gµ

j }. (f) Same as (c), now comparing SO(3) to R3. (g)
Test log likelihood ratio for 10 synthetic datasets on T 2, SO(3), & S3, with mGPLVM fitted
on each manifold (x-axis). Solid lines indicate mean across datasets.

We first generated data on the ring (T 1, Figure 3.6, top left), letting the true latent state
be a continuous random walk across conditions for ease of visualization. We then fitted T 1-
mGPLVM to the data and found that it correctly discovered the true latent states g as well as
the ground truth tuning curves (Figure 3.6, bottom right). Reordering the neurons according
to their preferred angles further exposed the population encoding of the angle (Figure 3.6, top
right).

Next, we expanded the latent space to two dimensions with data now populating a 2-torus
(T 2). Despite the non-trivial topology of this space, T 2-mGPLVM provided accurate inference
of both latent states (Figure 3.7a) and tuning curves (Figure 3.7b). To show that mGPLVM
can be used to distinguish between candidate topologies, we compared T 2-mGPLVM to a
standard Euclidean GPLVM in R2 on the basis of both cross-validated prediction errors and

3.2 Manifold Gaussian process latent variable models 49

importance-weighted marginal likelihood estimates (Burda et al., 2015). We simulated 10
different toroidal datasets; for each, we used half the conditions to fit the GP hyperparameters,
and half the neurons to predict the latent states for the conditions not used to fit the GP
parameters. Finally, we used the inferred GP parameters and latent states to predict the
activity of the held-out neurons at the held-out conditions. As expected, the predictions of the
toroidal model outperformed those of the standard Euclidean GPLVM which cannot capture
the periodic boundary conditions of the torus (Figure 3.7c).

Beyond toroidal spaces, SO(3) is of particular interest for the study of neural systems encoding
‘yaw, pitch and roll’ in a variety of 3D rotational contexts (Finkelstein et al., 2015; Shepard and
Metzler, 1971; Wilson et al., 2018). We therefore fitted an SO(3)-mGPLVM to synthetic data
generated on SO(3) and found that it rendered a faithful representation of the latent space
and outperformed a Euclidean GPLVM on predictions (Figure 3.7d-f). Finally we show that
mGPLVM can also be used to select between multiple non-Euclidean topologies. We generated
10 datasets on each of T 2, SO(3) and S3 and compared cross-validated log likelihoods for T 2-,
SO(3)- and S3-mGPLVM, noting that p(M|YYY)∝ p(YYY |M) under a uniform prior over manifolds
M. Here we found that the correct latent manifold was consistently the most likely for all 30
datasets (Figure 3.7g). In summary, these results show robust performance of mGPLVM across
various manifolds of interest in neuroscience and beyond, as well as a quantitative advantage
over Euclidean GPLVMs which ignore the underlying topology of the latent space.

The Drosophila head direction circuit

Finally we applied mGPLVM to an experimental dataset to show that it is robust to biological
and measurement noise. Here, we used calcium imaging data recorded from the ellipsoid
body (EB) of Drosophila melanogaster (Turner-Evans, 2020; Turner-Evans et al., 2020), where
the so-called E-PG neurons have recently been shown to encode head direction (Seelig and
Jayaraman, 2015). The EB is divided into 16 ‘wedges’, each containing 2-3 E-PG neurons
that are not distinguishable on the basis of calcium imaging data, and we therefore treat each
wedge as one ‘neuron’. Due to the physical shape of the EB, neurons come ‘pre-ordered’ since
their joint activity resembles a bump rotating on a ring (Figure 3.8a, analogous to Figure 3.6,
“ordered data”). While the EB’s apparent ring topology obviates the need for mGPLVM as
an explorative tool for uncovering manifold representations, we emphasize that head direction
circuits in higher organisms are not so obviously structured (Chaudhuri et al., 2019; Appendix B)
– in fact, some brain areas such as the entorhinal cortex even embed concurrent representations
of multiple spaces (Constantinescu et al., 2016; Hafting et al., 2005).

We fitted the full mGPLVM with separate GP hyperparameters for each neuron and found that
T 1-mGPLVM performed better than R1-mGPLVM on both cross-validated prediction errors
and log marginal likelihoods (Figure 3.8b). The model recovered latent angles that faithfully

50 Latent variable models

Figure 3.8 The Drosophila head direction circuit. (a) Input data overlaid with the
posterior variational distribution over latent states of a T 1-mGPLVM. (b) Mean cross-validated
prediction error (left) and negative log likelihood (right) for models fitted on T 1 and R1. Each
datapoint corresponds to a different partition of the timepoints into a training set and a test set.
(c-d) Posterior tuning curves for eight example neurons in T 1 (c) and R1 (d). Color encodes
the position of the maximum of each tuning curve. Shadings in (a,c,d) indicate ±2 s.t.d.

captured the visible rotation of the activity bump around the EB, with larger uncertainty
during periods where the neurons were less active (Figure 3.8a, orange). When querying the
posterior tuning curves from a fit in R1, these were found to suffer from spurious boundary
conditions with inflated uncertainty at the edges of the latent representation – regions where
R1-mGPLVM effectively has less data than T 1-mGPLVM since R1 does not wrap around. In
comparison, the tuning curves were more uniform across angles in T 1, which correctly captures
the continuity of the underlying manifold. In Appendix B, we describe similar results with
mGPLVM applied to a dataset from the mouse head-direction circuit with more heterogeneous
neuronal tuning and no obvious anatomical organization (Peyrache and Buzsáki, 2015).

3.2.4 Discussion

Conclusion We have presented an extension of the popular GPLVM model to incorporate
non-Euclidean latent spaces. This is achieved by combining a Bayesian GPLVM with recently
developed methods for approximate inference in non-Euclidean spaces and a new family of
manifold-specific kernels. Inference is performed using variational sparse GPs for computational
tractability with inducing points optimized directly on the manifold. We demonstrated that
mGPLVM correctly infers the latent states and GP parameters for synthetic data of various

3.2 Manifold Gaussian process latent variable models 51

dimensions and topologies, and that cross-validated model comparisons can recover the correct
topology of the space. Finally, we showed how mGPLVM can be used to infer latent topologies
and representations in biological circuits from calcium imaging data. We expect mGPLVM
to be particularly valuable to the neuroscience community because many quantities encoded
in the brain naturally live in non-Euclidean spaces (Chaudhuri et al., 2019; Finkelstein et al.,
2015; Wilson et al., 2018).

Related work GP-based latent variable models with periodicity in the latent space have
previously been used for motion capture, tracking and animation (Elgammal and Lee, 2008;
Urtasun et al., 2008). However, these approaches are not easily generalized to other non-
Euclidean topologies and do not provide a tractable marginal likelihood, which forms the basis
of our Bayesian model comparisons. Additionally, methods have been developed for analysing
the geometry of the latent space of GPLVMs (Tosi et al., 2014) and other latent variable models
(Arvanitidis et al., 2017) after initially learning the models with a Euclidean latent. These
approaches confer a degree of interpretability to the learned latent space but do not explicitly
incorporate priors and topological constraints on the manifold during learning. Furthermore,
GPs and GPLVMs with non-Euclidean outputs have been developed (Mallasto and Feragen,
2018; Mallasto et al., 2019; Navarro et al., 2017). These approaches are orthogonal to mGPLVM
where the latent GP inputs, not outputs, live on a non-Euclidean manifold. mGPLVM can
potentially be combined with these approaches to model non-Euclidean observations, and to
incorporate more expressive GP priors over the latent states than the independent prior we
have used here.

Finally, several methods for inference in non-Euclidean spaces have been developed in the
machine learning literature. These have centered around methods based on VAEs (Davidson
et al., 2018; Rey et al., 2019; Wang and Wang, 2019), normalizing flows (Rezende et al., 2020),
and neural ODEs (Falorsi and Forré, 2020; Lou et al., 2020; Mathieu and Nickel, 2020). While
non-Euclidean VAEs are useful for amortized inference, they constrain f(g) more than a GP
does and do not naturally allow expression of a prior over its smoothness. Normalizing flows
and neural ODEs can potentially be combined with mGPLVM to increase the expressiveness
of the variational distributions (Falorsi et al., 2019). This would allow us to model complex
distributions over latents, such as the multimodal distributions that naturally arise in ambiguous
environments with symmetries (Jacob et al., 2017).

mGPLVM extensions Here, we have assumed statistical independence across latent states,
but prior dependencies could be introduced to incorporate e.g. temporal smoothness by placing
a GP prior on the latents as in GPFA (Yu et al., 2009; see Jensen et al., 2022b for some
extensions in this direction). To capture more statistical structure in the latents, richer
variational approximations of the posterior could be learned by using normalizing flows on the

52 Latent variable models

base distribution (rφ). It would also be interesting to exploit automatic relevance determination
(ARD, Neal, 2012) in mGPLVM to automatically select the latent manifold dimension. We
explored this approach by fitting a T 2-mGPLVM to the data from Figure 3.6 with separate
lengthscales for the two dimensions, where we found that T 2 shrunk to T 1, the true underlying
manifold (Appendix B).

Furthermore, the mGPLVM framework can be extended to direct products of manifolds, enabling
the study of brain areas encoding non-Euclidean variables such as head direction jointly with
global modulation parameters such as attention or velocity. As an example, fitting a (T 1×R1)-
mGPLVM to the Drosophila data captures both the angular heading in the T 1 dimension as
well as a variable correlated with global activity in the R1 dimension (Appendix B).

Future applications mGPLVM not only infers the most likely latent states but also esti-
mates the associated uncertainty, which can be used as a proxy for the degree of momentary
coherence expressed in neural representations. It would be interesting to compare such posterior
uncertainties and tuning properties in animals across brain states. For example, uncertainty
estimates could be compared across sleep and wakefulness or environments with reliable and
noisy spatial cues.

In the motor domain, mGPLVM can help elucidate the neural encoding of motor plans for
movements naturally specified in rotational spaces. Examples include 3-dimensional head
rotations represented in the rodent superior colliculus (Masullo et al., 2019; Wilson et al., 2018)
as well as analogous circuits in primates. Finally, it will be interesting to apply mGPLVM
to artificial agents trained on tasks that require them to form internal representations of
non-Euclidean environmental variables (Banino et al., 2018). Our framework could be used to
dissect such representations, adding to a growing toolbox for the analysis of artificial neural
networks (Sussillo and Barak, 2013).

Like Bayesian GPFA developed in Section 3.1, mGPLVM thus provides an additional tool
in the Bayesian toolbox for neural data analysis. Together, these tools allow us to extract
more interpretable features and lower-dimensional summaries from high-dimensional neural
activity, and they demonstrate the importance of including appropriate inductive biases such
as temporal continuity or non-Euclidean latent structure. In the remainder of this work, we
will see how similar ideas can be used not just for data analysis but also to explicitly model the
processes and computations taking place in biological neural circuits.

Chapter 4

Continual learning

In this chapter, we develop a new method for continual learning (Section 2.4). The method
was originally developed with the aim of performing well in standard continual learning tasks
from the machine learning literature (van de Ven and Tolias, 2019), and we compare it to
several existing methods on these benchmarks (Section 4.1). We then go on to show how
this and other algorithms for continual learning can also be considered strong models for
computational neuroscience, where they lead to different predictions for the evolution of neural
dynamics during sequential learning of multiple tasks. Finally, we compare these predictions to
recent experimental data from rodent motor circuits after learning of a motor task, and we
discuss the extent to which computational models can help us interpret experimental data on
representational stability and drift (Section 4.2).

4.1 Natural continual learning

This section has been peer reviewed and published as Kao et al. (2021a).

4.1.1 Introduction

Catastrophic forgetting is a common feature of many machine learning algorithms, where
training on a new task often leads to poor performance on previously learned tasks. This is in
contrast to biological agents, which are capable of learning many different behaviors over the
course of their lives with little to no interference across tasks. The study of continual learning
in biological networks may therefore help inspire novel approaches in machine learning, while
the development and study of continual learning algorithms in artificial agents can help us
better understand how this challenge is overcome in the biological domain. This is particularly
true for more challenging continual learning settings where task identity is not provided at test
time, and for continual learning in recurrent neural networks (RNNs), which is important due
to the practical and biological relevance of RNNs. However, continual learning in these settings
has recently proven challenging for many existing algorithms, particularly those that rely on
parameter regularization to mitigate forgetting (Duncker et al., 2020; Ehret et al., 2020; van de
Ven and Tolias, 2019). In this work, we address these shortcomings by developing a continual
learning algorithm that not only encourages good performance across tasks at convergence

54 Continual learning

but also regularizes the optimization path itself using trust region optimization. This leads to
improved performance compared to existing methods.

Previous work has addressed the challenge of continual learning in artificial agents using weight
regularization, where parameters important for previous tasks are regularized to stay close to
their previous values (Aljundi et al., 2018; Huszár, 2017; Kirkpatrick et al., 2017; Nguyen et al.,
2017; Ritter et al., 2018; Zenke et al., 2017). This approach can be motivated by findings in
the neuroscience literature of increased stability for a subset of synapses after learning (Xu
et al., 2009; Yang et al., 2009). More recently, approaches based on projecting gradients into
subspaces orthogonal to those that are important for previous tasks have been developed in both
feedforward (Saha et al., 2021; Zeng et al., 2019) and recurrent (Duncker et al., 2020) neural
networks. This is consistent with experimental findings that neural dynamics often occupy
orthogonal subspaces across contexts in biological circuits (Ames and Churchland, 2019; Failor
et al., 2021; Jensen et al., 2021; Kaufman et al., 2014). While these methods have been found
to perform well in many continual learning settings, they also suffer from several shortcomings.
In particular, while Bayesian weight regularization provides a natural way to weight previous
and current task information, this approach can fail in practice due to its approximate nature
and often requires additional tuning of the importance of the prior beyond what would be
expected in a rigorous Bayesian treatment (van de Ven and Tolias, 2018). In contrast, while
projection-based methods have been found empirically to mitigate catastrophic forgetting, it is
unclear how the ‘important subspaces’ should be selected and how such methods behave when
task demands begin to saturate the network capacity.

In this work, we develop natural continual learning (NCL), a new method that combines (i)
Bayesian continual learning using weight regularization with (ii) an optimization procedure
that relies on a trust region constructed from an approximate posterior distribution over the
parameters given previous tasks. This encourages parameter updates predominantly in the null-
space of previously acquired tasks while maintaining convergence to a maximum of the Bayesian
approximate posterior. We show that NCL outperforms previous continual learning algorithms
in both feedforward and recurrent networks. We also show that the projection-based methods
introduced by Duncker et al. (2020) and Zeng et al. (2019) can be viewed as approximations to
such trust region optimization using the posterior from previous tasks. Finally, we use tools
from the neuroscience literature to investigate how the learned networks overcome the challenge
of continual learning. Here, we find that the networks learn latent task representations that are
stable over time after initial task learning, consistent with results from biological circuits. This
provides a new strong Bayesian model of sequential task learning in biological circuits.

4.1 Natural continual learning 55

A convex loss

Laplace Projected NCL (ours) Task 1 Task 2 Global

B non-convex loss

Figure 4.1 Continual learning in a toy problem. (A) Loss landscapes of task 1 (ℓ1; left),
task 2 (ℓ2; middle) and the combined loss ℓ1+2 = ℓ1 +ℓ2 (right). Stars indicate the global optima
for ℓ1 (red), ℓ2 (blue), and ℓ1+2 (purple). We assume that θ has been optimized for ℓ1 and
consider how learning proceeds on task 2 using either the Laplace posterior (‘Laplace’, green),
projected gradient descent on ℓ2 with preconditioning according to task 1 (‘Projected’, pink), or
NCL (black dashed). Laplace follows the steepest gradient of ℓ1+2 and transiently forgets task
1. NCL follows a flat direction of ℓ1 and converges to the global optimum of ℓ1+2 with good
performance on task 1 throughout. Projected gradient descent follows a similar optimization
path to NCL but eventually diverges towards the optimum of ℓ2. (B) As in (A), now with
non-convex ℓ2 (center), leading to a second local optimum of ℓ1+2 (right) while ℓ1 is unchanged
(left). In this case, Laplace can converge to a local optimum which has ‘catastrophically’
forgotten task 1. Projected gradient descent moves only slowly in ‘steep’ directions of ℓ1 but
eventually converges to a minimum of ℓ2. Finally, NCL finds a local optimum of ℓ1+2 which
retains good performance on task 1. See Appendix C for further mathematical details.

4.1.2 Method

Natural continual learning

While the online Laplace approximation discussed in Section 2.4 has been applied successfully
in several continual learning settings (Kirkpatrick et al., 2017; Ritter et al., 2018), it has also
been found to perform sub-optimally on a range of problems (Duncker et al., 2020; van de
Ven and Tolias, 2018). Additionally, its Bayesian interpretation in theory prescribes a unique
way of weighting the contributions of previous and current tasks to the loss. However, to
perform well in practice, weight regularization approaches have been found to require ad-hoc
re-weighting of the prior term by several orders of magnitude (Kirkpatrick et al., 2017; Ritter
et al., 2018; van de Ven and Tolias, 2018). These shortcomings could be due to an inadequacy
of the approximations used to construct the posterior (Section 2.4.1). However, we show in
Figure 4.1 that standard gradient descent on the Laplace posterior has important drawbacks
even in the exact case. First, we show that exact Bayesian inference on a simple continual
regression problem can produce indirect optimization paths along which previous tasks are
transiently forgotten as a new task is being learned (Figure 4.1A; green), unlike what is observed
in biological agents. Second, when the loss is non-convex, we show that exact Bayesian inference
can still lead to catastrophic forgetting (Figure 4.1B; green).

56 Continual learning

An alternative approach that has found recent success in a continual learning setting involves
projection based methods which restrict parameter updates to a subspace that does not interfere
with previous tasks (Duncker et al., 2020; Zeng et al., 2019). However, it is not immediately
obvious how this projected subspace should be selected in a way that appropriately balances
learning on previous and current tasks. Additionally, such projection-based algorithms have
fixed points that are minima of the current task, but not necessarily minima of the (negative)
Bayesian posterior. This can lead to catastrophic forgetting in the limit of long training times
(Figure 4.1; pink), unless the learning rate is exactly zero in directions that interfere with
previous tasks.

To combine the desirable features of both classes of methods, we introduce “Natural Continual
Learning” (NCL) – an extension of the online Laplace approximation that also restricts
parameter updates to directions which do not interfere strongly with previous tasks. In a
Bayesian setting, we can conveniently express what is meant by such directions in terms of the
prior precision matrix ΛΛΛ. In particular, ‘flat’ directions of the prior (low precision) correspond
to directions that will not significantly affect the performance on previous tasks. Formally, we
derive NCL as the solution of a trust region optimization problem. This involves minimizing
the posterior loss Lk(θ) within a region of radius r centered around θ with a distance metric of
the form d(θ,θ+ δδδ) =

√
δδδ⊤ΛΛΛk−1δδδ/2 that takes into account the curvature of the prior via its

precision matrix ΛΛΛk−1:

δδδ = argmin
δδδ
Lk(θ)+∇θLk(θ)⊤δδδ subject to 1

2δ
δδ⊤ΛΛΛk−1δδδ ≤ r2, (4.1)

where Lk(θ+ δδδ)≈ Lk(θ) +∇θLk(θ)⊤δδδ is a first-order approximation to the updated Laplace
objective. The solution to this subproblem is given by δδδ ∝ ΛΛΛ−1

k−1∇θℓk(θ)− (θ−µµµk−1) (see
Appendix C for a derivation), which gives rise to the NCL update rule

θ← θ+γ
[
ΛΛΛ−1

k−1∇θℓk(θ)− (θθθ−µµµk−1)
]

(4.2)

for a learning rate parameter γ (which is implicitly a function of r in Equation 4.1). To
get some intuition for this learning rule, we note that ΛΛΛ−1

k−1 acts as a preconditioner for the
first (likelihood) term, which drives learning on the current task while encouraging parameter
changes predominantly in directions that do not interfere with previous tasks. Meanwhile, the
second term encourages θ to stay close to µµµk−1, the optimal parameters for the previous task.
As we illustrate in Figure 4.1, this combines the desirable features of both Bayesian weight
regularization and projection-based methods. In particular, NCL shares the fixed points of
the Bayesian posterior while also mitigating intermediate or complete forgetting of previous
tasks by preconditioning with the prior covariance. Notably, if the loss landscape is non-convex
(as it generally will be), NCL can converge to a different local optimum from standard weight
regularization despite having the same fixed points (Figure 4.1B).

4.1 Natural continual learning 57

Implementation The general NCL framework can be applied with different approximations
to the Fisher matrix FFF k in Equation 2.33 (see Section 2.4.1). In this work, we use a Kronecker-
factored approximation (Martens and Grosse, 2015; Ritter et al., 2018). However, even after
making a Kronecker-factored approximation to FFF k for each task k, it remains difficult to
compute the inverse of a sum of k Kronecker products (c.f. Equation 2.32). To address this
challenge, we derived an efficient algorithm for making a Kronecker-factored approximation to
ΛΛΛk =FFF k +ΛΛΛk−1≈AAAk⊗GGGk when ΛΛΛk−1 =AAAk−1⊗GGGk−1 and FFF k are also Kronecker products. This
approximation minimizes the KL-divergence between N (µµµk,(AAAk⊗GGGk)−1) and N (µµµk,(ΛΛΛk−1 +
FFF k)−1) (see Appendix C for details). Before training on the first task, we assume a spherical
Gaussian prior θ ∼ N (000,p−2

w III). The scale parameter pw can either be set to a fixed value
(e.g. 1) or treated as a hyperparameter, and we optimize pw explicitly for our experiments
in feedforward networks. NCL also has a parameter α which is used to stabilize the matrix
inversion ΛΛΛ−1

k−1 ≈ (AAAk−1⊗GGGk−1 +α2III)−1 (Appendix C). This is equivalent to a hyperparameter
used for such matrix inversions in OWM (Zeng et al., 2019) and DOWM (Duncker et al.,
2020), and it is important for good performance with these methods. The pw and α are
largely redundant for NCL, and we generally prefer to fix α to a small value (10−10) and
optimize the pw only. However, for our experiments in RNNs, we instead fix pw = 1 and
perform a hyperparameter optimization over α for a more direct comparison with OWM and
DOWM. The NCL algorithm is described in pseudocode in Appendix C together with additional
implementation and computational details.

Related work

As discussed in Section 2.4.1, our method is derived from prior work that relies on Bayesian
inference to perform weight regularization for continual learning (Huszár, 2017; Kirkpatrick
et al., 2017; Nguyen et al., 2017; Ritter et al., 2018). However, we also take inspiration from
the literature on natural gradient descent (Amari, 1998; Kunstner et al., 2019) to introduce
a preconditioner that encourages parameter updates primarily in flat directions of previously
learned tasks.

Recent projection-based methods (Duncker et al., 2020; Saha et al., 2021; Zeng et al., 2019)
have addressed the continual learning problem using an update rule of the form

θ← θ+γPPPL∇θℓk(θ)PPPR, (4.3)

where PPPL and PPPR are projection matrices constructed from previous tasks which encourage
parameter updates that do not interfere with performance on these tasks. Using Kronecker
identities, we can rewrite Equation 4.3 as

θ← θ+γ(PPPR⊗PPPL)∇θℓk(θ). (4.4)

58 Continual learning

This resembles the NCL update rule in Equation 4.2 where we identify PPPR⊗PPPL with the
approximate inverse prior precision matrix used for gradient preconditioning in NCL, ΛΛΛ−1

k−1 =
AAA−1

k−1⊗GGG
−1
k−1. Indeed, we note that for a Kronecker-structured approximation to FFF k, the matrix

AAAk−1 approximates the empirical covariance matrix of the network activations experienced
during all tasks up to k−1 (Bernacchia et al., 2018; Martens and Grosse, 2015, Appendix C),
which is exactly the inverse of the projection matrix PPPR used in previous work (Duncker et al.,
2020; Zeng et al., 2019). We thus see that NCL takes the form of recent projection-based
continual learning algorithms with two notable differences:
(i) NCL uses a left projection matrix PPPL designed to approximate the posterior covariance
of previous tasks ΛΛΛ−1

k−1 ≈ PPPR⊗PPPL (i.e., the prior covariance on task k; Appendix C), while
Zeng et al. (2019) use the identity matrix III and Duncker et al. (2020) use the covariance of
recurrent inputs (Appendix C). Notably, both of these choices of PPPL still provide reasonable
approximations to ΛΛΛ−1

k−1, and thus the parameter updates of OWM and DOWM can also be
viewed as projecting out steep directions of the prior on task k.
(ii) NCL includes an additional regularization term (θ−µµµk−1) derived from the Bayesian posterior
objective, while Duncker et al. (2020) and Zeng et al. (2019) do not use such regularization.
Importantly, this means that while NCL has a similar preconditioner and optimization path to
these projection based methods, NCL has stationary points at the modes of the approximate
Bayesian posterior while the stationary points of OWM and DOWM do not incorporate prior
information from previous tasks (c.f. Figure 4.1).

It is also interesting to note that previous Bayesian continual learning algorithms include a
hyperparameter λ that scales the prior compared to the likelihood term for the current task
(Loo et al., 2020):

L(λ)
k (θ) = logp(Dk|θ)−λ(θ−µµµk−1)⊤ΛΛΛk−1(θ−µµµk−1). (4.5)

To minimize this loss and thus find a mode of the approximate posterior, it is common to employ
pseudo-second-order stochastic gradient-based optimization algorithms such as Adam (Kingma
and Ba, 2014) that use their own gradient preconditioner based on an approximation to the
Hessian of Equation 4.5. Interestingly, this Hessian is given by HHHk =−H(Dk,θ)−λΛΛΛk−1, which
in the limit of large λ becomes increasingly similar to preconditioning with the prior precision
as in NCL. Consistent with this, previous work using the online Laplace approximation has
found that large values of λ are generally required for good performance (Kirkpatrick et al.,
2017; Ritter et al., 2018; van de Ven and Tolias, 2018). Recent work has also combined Bayesian
continual learning with natural gradient descent (Osawa et al., 2019; Tseran et al., 2018), and
in this case a relatively high value of λ= 100 was similarly found to maximize performance
(Osawa et al., 2019).

4.1 Natural continual learning 59

4.1.3 Experiments and results

NCL in feedforward networks

To verify the utility of NCL for continual learning, we first compared our algorithm to standard
methods in feedforward networks across two continual learning benchmarks: split MNIST and
split CIFAR-100 (see Appendix C for task details). For each benchmark, we considered three
continual learning settings (van de Ven and Tolias, 2019). In the ‘task-incremental’ setting,
task identity is available to the network at test time, in our case via a multi-head output
layer (Chaudhry et al., 2018). In the ‘domain-incremental’ setting, task identity is unavailable
at test time, and the output layer is shared between all tasks. Finally, in the ‘class-incremental’
setting, the network has to both infer task identity and solve the task, in our case by performing
classification over all possible classes irrespective of which task the input in question is drawn
from.

van de Ven and Tolias previously showed that parameter regularization methods such as EWC
perform poorly in the domain- and class-incremental settings (van de Ven and Tolias, 2019).
We therefore applied NCL as well as synaptic intelligence [SI; Zenke et al., 2017], online EWC
(Schwarz et al., 2018), Kronecker factored EWC [KFAC; Ritter et al., 2018], and orthogonal
weight modification [OWM; Zeng et al., 2019] to split MNIST and split CIFAR-100 in the task-,
domain- and class-incremental learning settings. For these continual learning problems, we
found that NCL outperformed all the baseline methods in the task- and domain-incremental
learning settings (Figure 4.2). In the class-incremental settings, we found that NCL performed
comparably to but slightly worse than OWM. However, both OWM and NCL comfortably
outperformed the other compared methods in this setting. These results suggest that the
subpar performance of parameter regularization methods can be alleviated by regularizing their
optimization paths, particularly in the domain- and class-incremental learning settings.

For the split MNIST and split CIFAR-100 experiments, each baseline method had a single
hyperparameter (c for SI, λ for EWC and KFAC, α for OWM, and pw for NCL; Appendix C)
that was optimized on a held-out seed (see Appendix C). However, by setting the NCL prior
to a unit Gaussian, we were also able to achieve good performance across task sets in a
hyperparameter-free setting, further highlighting the robustness of the method (see “NCL (no
opt)” in Figure 4.2).

NCL in recurrent neural networks

We then proceeded to consider how NCL compares to previous methods in recurrent neural
networks (RNNs), a setting that has recently proven challenging for continual learning (Duncker
et al., 2020; Ehret et al., 2020) and which is of interest to the study of continual learning in

60 Continual learning

0.9

1.0
task

M
NI

ST
ac

cu
ra

cy

0.6

0.8

1.0
domain

0.2

0.6

1.0
class

SI
EW

C
KF

AC
OWM

NCL (
no

 op
t)

NCL
0.6

0.7

0.8

CI
FA

R
ac

cu
ra

cy

SI
EW

C
KF

AC
OWM

NCL (
no

 op
t)

NCL

0.2
0.3
0.4

SI
EW

C
KF

AC
OWM

NCL (
no

 op
t)

NCL

0.1

0.3

0.5

Figure 4.2 NCL performance in feedforward networks. Average test accuracy after
learning all tasks on split MNIST (top row) and split CIFAR-100 (bottom-row) in the task-
, domain- and class-incremental learning settings. Dashed horizontal lines denote average
performance when networks are trained simultaneously on all tasks. Solid horizontal lines
denote average performance when networks are trained sequentially on each task without
applying any continual learning methods. Error bars denote standard error across 20 (MNIST)
or 10 (CIFAR) random seeds. ‘NCL’ indicates natural continual learning where the initial
prior has been optimized on a held-out random seed, and ‘NCL (no opt)’ indicates NCL with a
simple unit Gaussian prior and no hyperparameter optimization. Numerical results for these
experiments are provided in Table C.2 in Appendix C.

biological circuits (Duncker et al., 2020; Yang et al., 2019). In these experiments, the task
identity is available to the RNN (i.e., we consider the task-incremental learning setting).

Stimulus-response tasks In this section, we consider a set of neuroscience inspired ‘stimulus-
response’ (SR) tasks (Yang et al., 2019; details in Appendix C). We first compared the
performance and behavior of NCL to OWM, the top performing method in the feedforward
setting (Figure 4.2), and to the projection-based DOWM method designed explicitly for RNNs
(Duncker et al., 2020). For a more direct comparison with OWM and DOWM, we fixed the
NCL prior to a unit Gaussian for all RNN experiments and instead performed a hyperparameter
optimization over ‘α’ used to regularize the matrix inversions for all three methods (Section 4.1.2,
Appendix C,Duncker et al., 2020, Zeng et al., 2019). Following previous work, we trained RNNs
with 256 recurrent units to sequentially solve six stimulus-response tasks (Duncker et al., 2020;
Yang et al., 2009). While NCL, OWM and DOWM all managed to learn the six tasks without
catastrophic forgetting, we found that NCL achieved superior average performance across tasks
after training (Figure 4.3A).

4.1 Natural continual learning 61

We then compared NCL, OWM, and DOWM to KFAC, the top performing parameter regular-
ization method in our feedforward experiments (Figure 4.2), which uses Adam (Kingma and
Ba, 2014) to optimize the objective in Equation 2.31 with a Kronecker-factored approximation
to the posterior precision matrix (Section 2.4.1; Ritter et al., 2018). Consistent with the
results shown in Duncker et al. (2020), we found that NCL, OWM, and DOWM outperformed
KFAC with λ= 1 (Figure 4.3A; see also Duncker et al., 2020 for a comparison of DOWM and
EWC). We note that NCL and KFAC optimize the same objective function (Equation 2.31)
and approximate the posterior precision matrix in the same way, but they differ in the way
they precondition the gradient of the objective. These results thus demonstrate empirically
that the choice of optimization algorithm is important to prevent forgetting, consistent with
the intuition provided by Figure 4.1.

In feedforward networks, poor performance with weight regularization approaches such as
EWC and KFAC has been mitigated by optimizing the hyperparameter λ, which increases
the importance of the prior term compared to a standard Bayesian treatment (Equation 4.5;
Section 4.1.3, Kirkpatrick et al., 2017; Loo et al., 2020; Ritter et al., 2018). We confirmed
this here by performing a grid search over λ, which showed that KFAC with λ ∈ [100,1000]
could perform comparably to the projection-based methods (Appendix C; Figure 4.3A). We
hypothesize that the good performance provided by high λ is partly due to the approximate
second order nature of Adam which, together with the relative increase in the prior term
compared to the data term, leads to preconditioning with a matrix resembling the prior ΛΛΛk−1

(Section 4.1.2). In support of this hypothesis, we found that the KL divergence between the
Adam preconditioner and the approximate prior precision ΛΛΛk−1 decreased with increasing
λ, and that the performance of KFAC with Adam could also be rescued by increasing λ

only when computing the preconditioner while retaining λ= 1 when computing the gradients
(Appendix C).

Stroke MNIST One way to challenge the continual learning algorithms further is to increase
the number of tasks. We thus considered an augmented version of the stroke MNIST dataset
[SMNIST; de Jong, 2016]. The original dataset consists of the MNIST digits transformed
into pen strokes with the direction of the stroke at each time point provided as an input to
the network. Similar to Ehret et al. (2020), we constructed a continual learning problem by
considering consecutive binary classification tasks inspired by the split MNIST task set. We
further increased the number of tasks by including a set of extra digits where the x and y
dimensions have been swapped in the input stroke data, and another set where both the x and
y dimensions have changed sign. We also added high-variance noise to the inputs to increase
the task difficulty. This gave rise to a total of 15 binary classification tasks, each with unique
digits not used in other tasks, which we sought to learn in a continual fashion using an RNN
with 30 recurrent units (see Appendix C for details).

62 Continual learning

NCL
DOWM

OWM

KF
AC (op

t)

KF
AC (

= 1)
0.02

0.03

0.04

lo
ss

A SR
0.56

NCL
DOWM

OWM

KF
AC (op

t)

KF
AC (

= 1)
0.05

0.10

0.15

cla
ss

ifi
ca

tio
n

er
ro

r

B SMNIST
0.24

1 5 10 15
task number

0.05
0.00
0.05
0.10
0.15

 e
rro

r

C SMNIST

Figure 4.3 Performance on SR and SMNIST tasks. (A) Mean loss of NCL, DOWM,
OWM, KFAC (optimal λ), and KFAC (λ= 1) across stimulus-response tasks after sequential
training on all tasks. Error bars indicate standard error across 5 random seeds. Here and in
(B), KFAC with λ = 1 failed catastrophically, and its performance is indicated in text as it
does not fit on the axes. (B) Mean classification error across SMNIST tasks after sequential
training. (C) Difference between the mean classification error of Laplace-DOWM and NCL
as a function of task number. Error bars in (B) and (C) indicate standard error across 100
random task permutations.

As for the SR task set in Section 4.1.3, we found that NCL outperformed previous projection-
based methods (Figure 4.3B). We again found that weight regularization with a KFAC ap-
proximation performed poorly with λ= 1, and that this poor performance could be partially
rescued by optimizing over λ (Figure 4.3B). To investigate how the difference in performance
between NCL and DOWM was affected by their different approximations to the Fisher matrix,
we implemented NCL using the DOWM projection matrices as an alternative approximation to
the inverse Fisher matrix. We refer to this method as Laplace-DOWM. We then considered how
the performance on each task at the end of training depended on task number, averaged over
different task permutations (Figure 4.3C). We found that while Laplace-DOWM outperformed
NCL on the first task, this method generally performed worse on subsequent tasks. Notably,
Laplace-DOWM exhibited a near-monotonic decrease in relative performance with task number,
which is consistent with the intuition that DOWM overestimates the dimensionality of the
parameter subspace that matters for previous tasks (Appendix C). In contrast, although neural
circuits are known to use orthogonal subspaces in different contexts, there is no general sense
that learning more tasks in the past should systematically hinder learning in future contexts
for biological agents.

4.1 Natural continual learning 63
4

vs
 5

1
vs

 7

r2 = 0.14

k = 1

r2 = 1.0

k = 2

r2 = 1.0

k = 3

r2 = 0.98

k = 6

r2 = 0.95

k = 10

r2 = 0.95

k = 15

r2 = 0.0 r2 = 0.05 r2 = 1.0 r2 = 1.0 r2 = 0.99 r2 = 0.99

task 4/5
learned

task 1/7
learned

Figure 4.4 Latent dynamics during SMNIST. We considered two example tasks, 4 vs 5
(top) and 1 vs 7 (bottom). For each task, we simulated the response of a network trained by
NCL to 100 digits drawn from that task distribution at different times during learning. We then
fitted a factor analysis model for each example task to the response of the network right after
the correponding task had been learned (squares; k = 2 and k = 3 respectively). We used this
model to project the responses at different times during learning into a common latent space for
each example task. For both example tasks, the network initially exhibited variable dynamics
with no clear separation of inputs and subsequently acquired stable dynamics after learning
to solve the task. The r2 values above each plot indicate the similarity of neural population
activity with that collected immediately after learning the corresponding task, quantified across
all neurons (not just the 2D projection).

Dissecting the dynamics of networks trained on the SMNIST task set

To further investigate how the trained RNNs solve the continual learning problems and how
this relates to the neuroscience literature, we dissected the dynamics of networks trained on the
SMNIST task set using the NCL algorithm. To do this, we analyzed latent representations of
the RNN activity trajectories, as is commonly done to study the collective dynamics of artificial
and biological networks (Gallego et al., 2020; Jensen et al., 2021, 2020; Mante et al., 2013; Yu
et al., 2009). We considered two consecutive classification tasks, namely classifying 4’s vs 5’s
(k = 2) and classifying 1’s vs 7’s (k = 3). For each of these tasks, we trained a factor analysis
model right after the task was learned, using network activity collected while presenting 50
examples of each of the two input digits associated with the task. We then tracked the network
responses to the same set of stimuli at various stages of learning, both before and after the task
in question was acquired, using the trained factor analysis model to visualize low-dimensional
summaries of the dynamics (Figure 4.4).

Consistent with the network having successfully learned to solve these two tasks, we found
that latent trajectories diverged over time for the two types of inputs in each task. Critically,
these diverging dynamics only emerged after the task was learned, and remained highly stable

64 Continual learning

thereafter (Figure 4.4). The stability of the task-associated representations is consistent with
recent work in the neuroscience literature showing that, in a primate reaching task, latent
neural trajectories remain stable after learning (Gallego et al., 2020). Since here we have access
to the activity of all neurons throughout the task, we proceeded to quantify the source of this
stability at the level of single units. The stability of such single-neuron dynamics after learning
has recently been a topic of much interest in biological circuits (Clopath et al., 2017; Lütcke
et al., 2013; Rule et al., 2019). In the RNNs, we found that the single-unit representations of a
given digit changed during learning of the task involving that digit but stabilized after learning,
consistent with work in several distinct biological circuits (Chestek et al., 2007; Dhawale et al.,
2017; Ganguly and Carmena, 2009; Jensen et al., 2022a; Katlowitz et al., 2018; Peters et al.,
2014). Similar results were found using the DOWM algorithm, which was explicitly designed to
preserve network dynamics on previously learned tasks (Duncker et al., 2020).

4.1.4 Discussion

In summary, we have developed a new framework for continual learning based on approximate
Bayesian inference combined with trust-region optimization. We showed that this framework
encompasses recent projection-based methods and found that it performs better than naive
weight regularization. This was particularly evident when task identity was not provided at test
time and in recurrent neural networks, settings which have previously been challenging for many
continual learning algorithms (Duncker et al., 2020; Ehret et al., 2020; van de Ven and Tolias,
2019). Furthermore, we showed that our principled probabilistic approach outperforms previous
projection-based methods (Duncker et al., 2020; Zeng et al., 2019), in particular when the
number of tasks and their complexity challenges the network’s capacity. Finally, we analyzed
the dynamics of the learned RNNs in a sequential binary classification problem, where we
found that the latent dynamics adapt to each new task. We also found that the task-associated
dynamics were subsequently conserved during further learning, consistent with experimental
reports of stable neural representations (Dhawale et al., 2017; Gallego et al., 2020; Jensen
et al., 2022a). Importantly, our results suggest that preconditioning with the prior covariance
can lead to improved performance over existing continual learning algorithms. In future work,
it will therefore be interesting to apply this idea to other weight regularization approaches
such as EWC with a diagonal approximate posterior (Kirkpatrick et al., 2017). Finally, a
separate branch of continual learning utilizes replay-like mechanisms to reduce catastrophic
forgetting (Cong et al., 2020; Li and Hoiem, 2017; Pan et al., 2020; Shin et al., 2017; Titsias
et al., 2020; van de Ven and Tolias, 2018). While our work has focused on weight regularization,
such regularization and replay are not mutually exclusive. Instead, these two approaches have
been found to further improve robustness to catastrophic forgetting when combined (Nguyen
et al., 2017; van de Ven et al., 2020).

4.2 Representational stability in biological and artificial circuits 65

Impact and limitations While we have shown that NCL represents an important conceptual
and methodological advance for continual learning, it also comes with several limitations. One
such limitation arises from the relative difficulty of computing the prior Fisher matrix, which is
needed for our projection step. Indeed the success of methods such as Adam (Kingma and Ba,
2014) and EWC (Kirkpatrick et al., 2017) is due in part to their ease of implementation, which
facilitates broad applicability. It will therefore be interesting to investigate how approximations
such as a running average of a diagonal approximation to the empirical Fisher matrix as used
in Adam could facilitate the development of simple yet powerful variants of NCL.

Furthermore, while NCL mitigates the need to overcount the prior from previous tasks via λ
as in KFAC, it does introduce two other (largely redundant) hyperparameters in the form of
(i) the scale of the prior before the first task, and (ii) the parameter α used to regularize the
inversion of the prior Fisher matrix, similar to OWM and DOWM (Duncker et al., 2020; Zeng
et al., 2019). While α is an important hyperparameter for OWM and DOWM and we also
optimize it in the RNN setting for a more direct comparison (Section 4.1.3), we find it more
natural to set this parameter to a constant small value present only for numerical stability
(Appendix C). This leaves the prior scale, which we optimize explicitly in the feedforward setting
(Section 4.1.3). However, in future work it would be interesting to consider whether a good
prior can be determined in a data free manner to make NCL a hyperparameter-free method.
Finally, computing the Fisher matrix used for pre-conditioning requires explicit knowledge
of task boundaries. In future work, it will therefore be interesting to develop an algorithm
similar to NCL that also works for online learning problems with continually changing task
distributions.

4.2 Representational stability in biological and artificial circuits

4.2.1 Introduction

Humans and many other animals have the ability to learn many new behaviours over the course
of their lives. Despite this flexibility, most of the learned behaviours also remain highly stable
after learning, even after long periods without continued practice (Krakauer and Shadmehr,
2006; Melnick, 1971). The stability of such remembered behaviours is seemingly at odds with
the high degree of synaptic turnover observed in the brain (Holtmaat and Svoboda, 2009; Xu
et al., 2009; Yang et al., 2009).

In agreement with a turnover of dendritic spines and other cellular components, many studies
in neuroscience have found that task-associated neural representations drift over timescales of a
few hours to days (Carmena et al., 2005; Driscoll et al., 2017; Rokni et al., 2007; Schoonover
et al., 2021). Such unstable single-neuron representations have been hypothesized to still
facilitate stable behaviour either by restricting drift to a functional ‘null-space’ (Gallego et al.,

66 Continual learning

2020), or by limiting drift to directions in parameter space that only require minor changes
to a downstream neural decoder for stable performance (Rule et al., 2020). However, under
this hypothesis, it remains an open question how neural circuits would identify such null or
error-limiting directions in which to drift.

On the other hand, a separate set of studies has suggested that neural representations of a
given task tend to be stable after learning (Chestek et al., 2007; Dhawale et al., 2017; Flint
et al., 2016; Jensen et al., 2022a). This is consistent with the observation of long-term stability
in the zebra finch song circuit after initial learning in the juvenile bird (Katlowitz et al., 2018).
However, in the context of zebra finch song learning, plasticity is limited to a single ‘critical
period’ during development (Sizemore and Perkel, 2011), and the resulting circuit does not have
to adapt to learning new behaviours. In contrast, the brain regions studied in mammals tend
to undergo continual learning throughout life and therefore must maintain the ability to learn
and adapt in the face of these seemingly stable representations. There are thus contrasting
results on representational stability and drift in the neuroscience literature, with the additional
complication that different studies have often been carried out with different tasks and methods
in different circuits and even organisms. Reconciling these findings or pinpointing the reasons
for the observed differences therefore remains an important topic in systems neuroscience.

While the topic of stable neural representations and the apparent paradox with lifelong learning
has long been a topic of interest and study in the neuroscience community, it has also recently
begun to be addressed in the machine learning literature (Section 4.1). In particular, while
biological agents are capable of learning over a lifetime with little to no loss in performance on
previously learned tasks, artificial agents often undergo ‘catastrophic forgetting’, whereby the
performance on previous tasks deteriorates rapidly as new tasks are learned. This shortcoming
of artificial agents has been addressed using methods ranging from ‘replay’ of examples from
previous tasks (Li and Hoiem, 2017; Pan et al., 2020; Shin et al., 2017; van de Ven and Tolias,
2018) to regularizing parameters important for previous tasks (Kirkpatrick et al., 2017; Nguyen
et al., 2017; Ritter et al., 2018), and projecting parameter updates into subspaces that do not
interfere with previous tasks (Duncker et al., 2020; Zeng et al., 2019).

In this section, we attempt to relate experimental findings on neural stability to the machine
learning literature and consider how qualitatively different approaches to addressing the continual
learning problem can lead to different levels of representational stability at the single-neuron
level. We also discuss these results in light of experimental findings from different regions of
the brain in terms of both the stability of the neural representations and experimental evidence
for different mechanisms that might help overcome catastrophic forgetting.

To illustrate the implications of different continual learning algorithms for the stability of neural
representations, we use the stroke MNIST task also considered in Section 4.1 (de Jong, 2016). In
contrast to most approaches to continual learning, we will work with a recurrent neural network

4.2 Representational stability in biological and artificial circuits 67

model as in Section 4.1. Continual learning in such recurrent neural networks has recently
become a topic of interest in the machine learning community (Duncker et al., 2020; Ehret
et al., 2020) and is of significant interest when trying to understand how catastrophic forgetting
is mitigated in the brain – a large, noisy network with a high degree of recurrence.

4.2.2 Two classes of continual learning algorithms

We will consider two broad classes of continual learning algorithms, namely those that regularize
the parameters of the network and those that regularize the input-output mapping of the
network. The first class of algorithms broadly considers loss functions of the form

Lk(θk) = ℓ(θk;Dk)+d(θk,θ<k), (4.6)

where ℓ(θk;Dk) is the loss on the current task k, and d(θk,θ<k) indicates some divergence
between the current parameters (θk) and those optimized for previous tasks (θ<k). Notably,
this divergence is measured directly in parameter space. In contrast, functional regularization
algorithms consider loss functions of the form

Lk(θk) = ℓ(θk;Dk)+d(fθk
(D̃),fθ<k

(D̃)). (4.7)

Here, the divergence d() is specified in the space of functional mappings induced by the
parameters θ, as quantified over some dataset D̃. This functional divergence metric is more
directly related to our final objective of performance across all tasks. However, it can be much
harder to specify and optimize – especially in a putative biological circuit, where information
about the global functional mapping may not be available locally, while local parameter
information does exist.

From the set of parameter regularization algorithms, we consider ‘natural continual learning’
(NCL; Section 4.1; Kao et al., 2021a), which regularizes the loss function on later tasks using
the posterior over network parameters from previous tasks as a prior. This is combined with a
form of gradient projection that encourages searching for local minima in the space of solutions
to previous tasks, yielding the following learning rule on task k (c.f. Section 4.1):

θ← θ−γ
[
ΛΛΛ−1

k−1∇θℓk(θ)+(θ−µµµk−1)
]
. (4.8)

Here, γ is a learning rate, θ are the network parameters, and qφ(θ) = N (θ;µµµk−1,ΛΛΛ−1
k−1) is a

Laplace approximation to the posterior over θ constructed from tasks 1 to k (see Kao et al.,
2021a and Section 4.1 for details).

From the set of functional regularization algorithms, we consider a relatively naive implementa-
tion of continual learning using replay. In this method, the learner estimates the task-specific

68 Continual learning

loss ℓk(θ) using examples from the current task as above. In addition, the learner gets to ‘replay’
a set of examples {xxx(k′),yyy(k′)} from previous tasks at every iteration to estimate the expected
loss on earlier tasks

ℓ<k(θ) = 1
k−1

k−1∑
k′=1

E
[∑

t

logpθ({yyy(k′)
t }|{xxx(k′)

t })
]
. (4.9)

The parameters are then updated as

θ← θ−γ
[1
k
∇θℓk(θ)+ k−1

k
∇θℓ<k(θ)

]
. (4.10)

Note that while we explicitly replay examples drawn from the true data distribution for previous
tasks for simplicity, these examples could instead be drawn from a generative model that is
learned in a continual fashion together with the discriminative model (van de Ven et al., 2020;
van de Ven and Tolias, 2018).

Task representations

We trained an RNN with 30 recurrent units on 15 sequential binary classification tasks from the
extended SMNIST dataset used in Section 4.1. We stored the parameters of the network after
each task and simulated the responses of the corresponding networks to a set of 100 digits drawn
from the task distribution of each task, similar to Figure 4.4. We then computed the similarity
of the neural dynamics at different stages of the sequential learning process (k ∈ [1,15]) to the
dynamics right after task learning. For this analysis, similarity was quantified as the correlation
between neural responses to the same set of stimuli at two different points in time, averaged
over neurons (c.f. Jensen et al., 2022a).

For networks trained by NCL, we found that neural activity remained largely stable after
learning (Figure 4.5). This is consistent with neuroscience studies suggesting a high degree
of representational stability after learning a task (Chestek et al., 2007; Dhawale et al., 2017;
Flint et al., 2016; Katlowitz et al., 2018). Furthermore, the learning rule employed by NCL
regularizes changes in parameters from those used in previous tasks if they are ‘important’
for those tasks (c.f. Equation 4.8; see also Kirkpatrick et al., 2017). This is mechanistically
similar to the observation of a stable subset of dendritic spines following task learning in
previous experimental work (Fu et al., 2012; Yang et al., 2009), which lends some support to
the implementation of mechanisms resembling parameter regularization for continual learning
in biological systems.

When we trained the network using replay instead of NCL, the overall task performance was
comparable. However, in contrast to NCL (and other weight regularization approaches such
as EWC and KFAC), the networks trained with replay exhibited drifing representations of

4.2 Representational stability in biological and artificial circuits 69

2 5 8
time difference (tasks)

0.4

0.6

0.8

1.0

co
rr

el
at

io
n

NCL
replay

2 5 8
time difference (days)

DLS
MC

Figure 4.5 Comparison of computational and biological dynamics. (left) Similarity
of neural dynamics as a function of time difference in artificial networks. We computed the
response of the network to a set of input digits from each of the first five SMNIST tasks at
different points during training. We then computed the correlation of neural responses as
a function of time difference, measured in terms of the number of tasks learned. Lines and
shadings indicate mean and standard error across tasks for networks trained with NCL (black)
or replay (grey). (right) Representational similarity as a function of time difference in a
biological circuit described by Jensen et al. (2022a). Some of the drift in neural activity could
be attributed to a concomitant drift in behaviour (Jensen et al., 2022a). It is not clear how the
passing of biological time in this data relates to task learning in the artificial circuits.

previously acquired tasks. This is consistent with reports of changing neural representations
following learning in a different subset of the neuroscience literature (Carmena et al., 2005;
Driscoll et al., 2017; Rokni et al., 2007; Schoonover et al., 2021). Additionally, we hypothesize
that representational drift under functional regularization will be even more prominent for a
noisy optimisation in larger circuits with more degeneracy.

We proceeded to compare these results from artificial networks explicitly to a biological dataset
recently described by Jensen et al. (2022a), which quantified the similarity of neural activity
over time after learning a motor task (Kawai et al., 2015). In this dataset, neural representations
remained qualitatively stable over several weeks of recording (Figure 4.5). Additionally, analyses
by Jensen et al. (2022a) suggested that this level of stability is itself likely to be an underestimate
given potential confounds of drifting behaviour and other unmeasured processes that we do
not account for. Unfortunately, it is difficult to compare the timescale of drift in artificial
circuits and biological circuits directly, since artificial networks only see discrete tasks, while
biological circuits have to cope with the passing of continuous time and the associated turnover
of cellular parameters (Fu et al., 2012; Holtmaat and Svoboda, 2009). It is therefore not clear
what amount of task-specific learning in an artificial circuit is the equivalent of a single day of
experience in the biological circuit.

70 Continual learning

1

2

true loss

1

2

Laplace loss

Figure 4.6 Symmetry breaking in the Laplace approximation. True loss for a hypo-
thetical ‘task 1’ (left) and the approximate loss given by the Laplace approximation at one of
two degenerate local minima (right).

Local and global loss functions

Returning to the artificial networks, we can understand the qualitative differences in task-
associated neural dynamics between networks trained with NCL and replay by considering
the locality of the loss function that is optimized. Consider an example loss function, ℓ1, for
a hypothetical ‘task 1’ with two nearby local minima separated by a small energy barrier
(Figure 4.6; left). When proceeding to train on task 2 after learning task 1, the replay-based
approach to continual learning (Equation 4.9) provides an unbiased estimate of ℓ1(θ), although
it may be very noisy if the number of replay events is small. This allows θ to move between
adjacent local minima with similar task 1 performance, and the rate at which these transitions
occur will increase with increasing noise levels. If replay examples are instead drawn from a
learned generative model, they are likely to provide a biased estimate of ℓ̃1 ≈ ℓ1 but will still
allow relatively uninhibited transitions between nearby minima of the approximate loss function.
Any such transitions will lead to representational drift, and in the limit of noisy updates in
large parameter spaces with many adjacent or even continuous minima, drift is likely to be
substantial.

Consider instead the Laplace approximation to ℓ1(θ) (Figure 4.6; right). In this case, the
approximation ℓ̃1 ≈ ℓ1 is inherently local and will always favour parameters θ that resemble the
prior mean µµµ1. This will break degeneracies between otherwise equivalent parameter sets and
encourage a constancy of parameters that drives a constancy of dynamics. A simple example of
the degeneracy breaking introduced by the Laplace approximation is seen when permuting the
identity of all recurrent units using some permutation operator P̂u. If the parameters θ are
permuted accordingly, this will lead to a system with the exact same input-output mapping
and task performance. However, under the Laplace approximation, this new parameter set
θ̃ = P̂u(µµµ) will have a much higher loss than the original parameters µµµ given the ||θ−µµµ||22
term of the Laplace loss function (Section 2.4). While we have discussed such degeneracy
breaking specifically for the Laplace approximation here, the same is also true for other local

4.2 Representational stability in biological and artificial circuits 71

approximations that restrict changes from the parameters used in previous tasks or project
gradients based on the parameters or dynamics observed in previous tasks.

4.2.3 Discussion

In this section, we have highlighted how different continual learning algorithms can lead to
qualitatively different properties of neural dynamics in recurrent networks over the course
of learning. In particular, we have argued that continual learning algorithms based on local
parameter regularization or projection matrices constructed from previous tasks will tend to
preserve neural dynamics and lead to stable representations even as further tasks are learned.
In contrast, algorithms that regularize the input-output mapping, e.g. via exact or generative
replay, are susceptible to representational drift over the course of further learning.

It is interesting to speculate whether such algorithmic differences may explain some of the
discrepancies in experimental reports of neural stability after task learning. Notably, several
reports suggesting stable neural representations have centered around motor circuits (Chestek
et al., 2007; Dhawale et al., 2017; Flint et al., 2016; Gallego et al., 2020; Jensen et al., 2022a),
where previous work has also suggested that representations stabilize over the course of learning
(Ganguly and Carmena, 2009; Peters et al., 2014). This is consistent with our results for
parameter regularized networks (Figure 4.5), which restrict how much particular connections in
the network can change depending on their importance for prior tasks. Importantly, experimental
evidence for such regularization of specific connections has previously been reported in rodent
motor cortex (Fu et al., 2012; Yang et al., 2009), suggesting a potential mechanistic explanation
for the observed representational stability.

Conversely, neural representations have been reported to drift more rapidly in several higher
brain regions, including hippocampus (Ziv et al., 2013) and posterior parietal cortex (Driscoll
et al., 2017; Rule et al., 2020). This is consistent with the important role of hippocampal replay
in memory consolidation, which is well-established in the neuroscience literature (Carr et al.,
2011; van de Ven et al., 2016; Wilson and McNaughton, 1994). Additionally, replay-like events
have been observed in neocortical regions including posterior parietal cortex (Qin et al., 1997)
and prefrontal cortex (Shin et al., 2019). It is possible that such neural replay of past experiences
provides a substrate for continual learning in these brain regions, which obviates the need for
stability at the level of single synapses and allows for rapidly drifting representations.

Finally, it is worth noting the difficulty of directly comparing rates of drift in biological and
artificial circuits as highlighted in Figure 4.5. One reason for this is that the artificial setting is
‘perfectly controlled’ in the sense that there are no unaccounted behavioural or latent processes
that might affect the apparent stability of neural dynamics (Jensen et al., 2022a). Additionally,
it is difficult directly to compare the passing of time in these two cases. For example, it is
unclear how many ‘tasks’ in a machine learning setting should be learned in the equivalent of a

72 Continual learning

day or a week of biological time passing. Indeed in the biological setting, it is often artificial
to only speak of specific task learning in the first place, since it can be argued that animals
are always learning new associations and behaviours, and it will be difficult to quantify this
‘learning’ exactly. Biological time is thus not a discrete quantity of ‘learning a task’ or ‘not
learning a task’, but rather a continuum of noise and plasticity in circuits with different degrees
of relevance for different behaviours performed for different durations. Additionally, while
we have considered a binary distinction between ‘parameter regularization’ and ‘functional
regularization’, it is also plausible that some combination of mechanisms is used to preserve
memories in biological circuits, similar to recent work in the machine learning literature (Nguyen
et al., 2017; van de Ven et al., 2020).

For these reasons, we do not suggest a direct comparison between the timescale of drift in
biological and artificial circuits, which is unlikely to be meaningful. Instead, we propose that
thinking about the consequences of different algorithms for observed neural dynamics has the
potential to shed light on differences between brain regions, where principled comparisons
can be made using a fixed set of experimental paradigms and analysis methods. While it
may still seem overly simplistic to relate such differences in stability to putative algorithmic
differences, we believe that trying to relate our experimental data to tangible computational
models is a fruitful approach for making sense of the growing datasets recorded in modern
systems neuroscience. For this reason, we hope that strong models of continual learning may
help shed light on the literature on representational drift.

Chapter 5

Reinforcement learning to plan

In the previous chapter, we saw how continual learning formulated as Bayesian inference can
provide a strong model of representational stability and drift in biological circuits. In this
chapter, we develop another strong model of planning and decision making, formulated in
the language of reinforcement learning (Section 2.5). This model is inspired by recent work
on meta-reinforcement learning by Wang et al. (2018) and captures the ability of humans to
trade off actions for time spent thinking when encountering new tasks and task settings. The
‘outer loop’ of this reinforcement learning model can be formulated as inference in policy space,
treating the model parameters as variational parameters (Section 2.5). However, an important
new feature is that the model also learns to do inference in the space of hidden network states
as a form of ‘planning’ driven by policy rollouts. This provides a strong model of planning and
decision making in humans and other animals and sheds further light on a range of experimental
findings in the hippocampal replay literature.

This chapter is currently under review and is available as a preprint (Jensen et al., 2023).

5.1 Introduction

Humans and other mammals have a unique ability to adapt rapidly to new information and
changing environments. Such adaptation often involves spending extended and variable periods
of time contemplating possible futures before taking an action (Callaway et al., 2022; van
Opheusden et al., 2021). For example, we might take a moment to think about which route to
take to work depending on traffic conditions. The next day, some roads might be blocked due
to roadworks, requiring us to adapt and mentally review the available routes in a process of
re-planning before leaving the house. Since thinking does not involve the acquisition of new
information or interactions with the environment, it is perhaps surprising that it is so ubiquitous
for human decision making. However, thinking allows us to perform more computations with the
available information, which can lead to improved performance on downstream tasks (Bansal
et al., 2022). Since physically interacting with the environment can consume time and other
resources, or incur unnecessary risk, the benefits of planning often more than make up for the
time that was lost to the planning process itself.

Despite a wealth of cognitive science research on the algorithmic underpinnings of planning
(Callaway et al., 2022; Mattar and Daw, 2018; Mattar and Lengyel, 2022; Solway and Botvinick,

74 Reinforcement learning to plan

2012), little is known about the underlying neural mechanisms. This question has been difficult
to address due to a scarcity of intracortical recordings during planning, and during contextual
adaptation more generally. However, neuroscientists have begun to collect large-scale neural
recordings during increasingly complex behaviors from the hippocampus and prefrontal cortex,
brain regions known to be important for memory, decision making, and adaptation (Gillespie
et al., 2021; Jadhav et al., 2016; Pfeiffer and Foster, 2013; Samborska et al., 2022; Wang
et al., 2018; Widloski and Foster, 2022; Wu et al., 2017b). These studies have demonstrated
the importance of prefrontal cortex for generalizing abstract task structure across contexts
(Samborska et al., 2022; Wang et al., 2018). Additionally, it has been suggested that planning
could be mediated by the process of hippocampal forward replays (Agrawal et al., 2022; Foster,
2017; Jiang et al., 2022; Johnson and Redish, 2007; Mattar and Daw, 2018; Pfeiffer and Foster,
2013; Widloski and Foster, 2022). Despite these preliminary theories, little is known about
how hippocampal replays could be integrated within the dynamics of downstream circuits to
implement planning-based decision making and facilitate adaptive behavior (Yu and Frank,
2015). While prevailing theories of learning from replays generally rely on dopamine-mediated
synaptic plasticity (De Lavilléon et al., 2015; Gomperts et al., 2015; Mattar and Daw, 2018), it
is currently unclear whether this process could operate sufficiently fast to also inform online
decision making.

It has recently been suggested that some forms of fast adaptation could result from recurrent
meta-reinforcement learning (meta-RL; Duan et al., 2016; Wang et al., 2018, 2016). Such
meta-RL models posit that adaptation to new tasks can be directly implemented by the
recurrent dynamics of the prefrontal network. The dynamics themselves are learned through
gradual changes in synaptic weights, which are modified over many different environments and
tasks in a slow process of reinforcement learning. Importantly, such recurrent neural network
(RNN)-based agents are able to adapt rapidly to a new task or environment after training by
integrating their experiences into the hidden state of the RNN, with no additional synaptic
changes (Alver and Precup, 2021; Duan et al., 2016; Wang et al., 2018, 2016; Zintgraf et al.,
2019). However, previous models are generally only capable of making instantaneous decisions
and thus do not have the ability to improve their choices by ‘thinking’ prior to taking an action.
Wang et al. (2018) explored the possibility of allowing multiple steps of network dynamics
before making a decision, but this additional computation was also pre-determined by the
experimenter and not adaptively modulated by the agent itself.

In this work, we propose a model that similarly combines slow synaptic learning with fast
adaptation through recurrent dynamics in the prefrontal network. In contrast to previous work,
however, this recurrent meta-learner can choose to momentarily forgo physical interactions with
the environment and instead ‘think’ (Hamrick et al., 2017; Pascanu et al., 2017). This process
of thinking is formalized as the simulation of sequences of imagined actions, sampled from the
policy of the agent itself, which we refer to as ‘rollouts’ (Figure 5.1A). We introduce a flexible

5.1 Introduction 75

episode (T = 20 seconds) . . . next episode

explore exploit explore exploit

trial 1
(13 steps)

trial 2
(4 steps)

. . . next trials

agent
hidden goal

trial 1
(5 steps)

. . . next trials

world model

policy

act

input

think
rollout

RNN agent

environment

A C

B

Figure 5.1 Task and model schematics. (A) The RL agent consisted of a recurrent neural
network, which received information about the environment and executed actions in response.
The primary output of the agent was a policy from which the next action was sampled. This
action could either be to move in the environment in a given direction (up, down, left or
right), or to ‘plan’ by using an internal world model to simulate a possible future trajectory (a
‘rollout’). The agent was trained to maximize its average reward per episode and to predict (i)
the upcoming state, (ii) the current goal location, and (iii) the value of the current state. When
the agent decided to plan, the first two predictors were used in an open-loop planning process,
where the agent iteratively sampled ‘imagined’ actions and predicted what the resulting state
would be, and whether the goal had been (virtually) reached. The output of this planning
process was appended to the agent’s input on the subsequent time step (details in text). A
physical action was assumed to take 400 ms and a rollout was assumed to take 120 ms (Kurth-
Nelson et al., 2016). (B) Schematic illustrating the dynamic maze task. In each episode lasting
T = 20 seconds, a maze and a goal location were randomly sampled. Each time the goal was
reached, the subject received a reward and was subsequently “teleported” to a new random
location, from which it could return to the goal to receive more reward. The maze had periodic
boundaries, meaning that subjects could exit one side of the maze to appear at the opposite
side. (C) Schematic illustrating how policy rollouts can improve performance by altering the
momentary policy. An agent might perform a policy rollout leading to low value (top; black),
which would decrease the probability of physically performing the corresponding sequence
of actions. Conversely, a rollout leading to high value (bottom; orange) would increase the
probability of the corresponding action sequence. Notably, these policy changes occur at the
level of network dynamics rather than parameter updates.

maze navigation task to study the relationship between the behavior of such RL agents and
that of humans (Figure 5.1B). In this task, both human participants and RL agents (collectively
‘subjects’) have to discover the spatial location of an unknown goal in a novel environment, and
they subsequently have to return to this goal from multiple different starting locations (Banino
et al., 2018; Morris, 1981). Intriguingly, RL agents trained on this task learn to use rollouts

76 Reinforcement learning to plan

to improve their policy and better generalize to previously unseen environments, and they
selectively trigger rollouts in situations where humans also spend more time deliberating.

Additionally, we draw explicit parallels between the model rollouts and hippocampal replays
through novel analyses of recent hippocampal recordings from rats performing a similar maze
task (Widloski and Foster, 2022). We find that the content and behavioral effects of hippocampal
replays in this dataset have a striking resemblance to the content and effects of policy rollouts in
our computational model. Our work thus addresses two key questions from previous studies on
hippocampal replays and planning. First, we show that a recurrent network can meta-learn when
to plan instead of having to precompute a ‘plan’ in order to decide whether to use it (Mattar
and Daw, 2018; Russek et al., 2022). Second, we propose a new theory of replay-mediated
planning, which utilizes fast network dynamics for real-time decision making that could operate
in parallel to slower synaptic plasticity (Gomperts et al., 2015). To formalize this second point,
we provide a normative mathematical theory of how replays can improve decision making via
feedback to prefrontal cortex by approximating policy gradient optimization (Sutton and Barto,
2018). We show that such an optimization process naturally arises in our RL agent trained
for rapid adaptation and suggest that biological replays could implement a similar process of
rollout-driven decision making (Figure 5.1C).

Our work provides new insights into the neural underpinning of ‘thinking’ by bridging the
gap between recurrent meta-RL (Wang et al., 2018), machine learning research on adaptive
computation (Banino et al., 2021; Graves, 2016; Hamrick et al., 2017), and theories of meta-
cognition (Botvinick et al., 2020; Botvinick and Cohen, 2014; Griffiths et al., 2015). We link
these ideas to the phenomenon of hippocampal replays and provide a new theory of how forward
replays can modulate behavior through recurrent interactions with prefrontal cortex.

5.2 Results

5.2.1 Humans think for different durations in different contexts

To characterize the behavioral signatures of planning, we recruited 94 human participants from
Prolific to perform an online experiment. The experiment consisted of a maze navigation task
in which the walls and goal location periodically changed, thus requiring rapid adaptation.
The environment was a 4×4 grid with periodic boundaries, a set of impassable walls, and a
single hidden reward location (Figure 5.1B; Appendix D.2). The task consisted of a succession
of ‘episodes’, each lasting T = 20 seconds. At the beginning of each episode, both the wall
configuration and the reward location were randomly initialized and remained fixed until the
next episode. The initial position of the subject was also randomly sampled. Subjects first
had to explore the maze by taking discrete steps in the cardinal directions until they found
the hidden reward location. Upon finding this goal, subjects were immediately moved to a

5.2 Results 77

new random location, initiating a phase of exploitation during which they repeatedly had
to return to the same goal (Figure 5.1B). We refer to a single instance of navigating from
a random starting location to the goal as a ‘trial’. To encourage good performance, human
participants were paid a monetary bonus proportional to the average number of trials completed
per episode (Appendix D.2; Figure D.1), and the behavior of all subjects was recorded over 40
episodes.

We first examined human performance as a function of trial number within each episode,
comparing the first exploration trial with subsequent exploitation trials. We found that
participants exhibited a rapid ‘one-shot’ transition to goal-directed navigation after the initial
exploration phase (Figure 5.2A, black). This was true even though each new maze was not
seen before, and it is consistent with previous work demonstrating the ability of humans and
animals to adapt rapidly to new information in a ‘meta-learning’ setting (Wang et al., 2018).
We next investigated the time participants spent thinking during the exploitation phase. We
estimated the ‘thinking time’ for each action as the posterior mean under a probabilistic model
that decomposes the total response time for each action (Figure 5.2B; top) into the sum of
the thinking time (Figure 5.2B; bottom) and a perception-action delay. The prior distribution
over perception-action delays was estimated for each individual using a separate set of trials,
where participants were explicitly cued with the optimal path and thus did not have to plan a
route themselves (Appendix D.2; Figure D.1). Since the first step within each trial required
participants to parse their new position in the maze, a separate prior was fitted for the first
action in a trial.

Participants exhibited a wide distribution of thinking times during the exploitation phase of
the task (Figure 5.2B; bottom). To reveal any task-related structure in this variability, we
partitioned thinking times by within-trial action number and by distance to goal (Figure 5.2C).
We found that participants exhibited longer thinking times when further from the goal, consistent
with planning of longer routes taking more time. Furthermore, subjects exhibited substantially
longer thinking times for the first action of each trial (Figure D.2), consistent with them having
to initially plan a new route to the goal. These patterns confirm that the broad marginal
distribution of thinking times (Figure 5.2B) does not simply reflect a noisy decision making
process or task-irrelevant distractions. On the contrary, variability in thinking time is an
important feature of human behavior that reflects the variable moment-to-moment cognitive
demands for decision making.

5.2.2 A recurrent network model of planning

To model the rapid adaptation and the detailed patterns of thinking times displayed by
human subjects, we considered an RNN model trained in a meta-reinforcement learning setting
(Figure 5.1A; Appendix D.2; Duan et al., 2016; Wang et al., 2018, 2016). The RL agent consisted

78 Reinforcement learning to plan

of 100 gated recurrent units (GRUs; Cho et al., 2014; Figure D.3) and was characterized by a
time-varying internal activation state hhhk, which evolved dynamically according to

hhhk = φθ(xxxk,hhhk−1) (5.1)
yyyk = ζθ(hhhk). (5.2)

Here, θ denotes the set of all model parameters, xxxk are momentary inputs to the RNN, and yyyk

are momentary network outputs computed from the current state hhhk, which was reset at the
beginning of each episode. k indexes the evolution of the network dynamics and can in general
be different from the wallclock time t in agents that have the ability to ‘think’ for variable
periods of time (see below). Inputs consisted of the current agent location sssk, the previous
action taken ak−1 and associated reward signal rk−1, the elapsed time t since the beginning of
the episode, and the locations of all walls (Appendix D.2). Thus, while the reward location
was hidden and had to be both discovered and memorized, the rest of the environment was
fully observed. Outputs consisted primarily of a policy πθ(ak|hhhk), i.e. a set of probabilities
associated with each possible action, which depended on the current hidden state of the RNN.
At each step, an action ak was sampled from this distribution and triggered changes in the
environment ψ according to:

xxxk+1,sssk+1 = ψ(ak,sssk). (5.3)

This yielded both a new location sssk+1 of the agent and the new inputs xxxk+1, which were fed
back to the agent on the subsequent iteration (Figure 5.1A). In addition to the policy, the
output of the agent included a value function and predictions of the new location and current
goal location.

As in standard RL settings, we quantified the performance of the agent in a given environment
as the expected total reward,

J(θ) = Eπθ

[
K∑

k=1
rk

]
. (5.4)

Training proceeded by gradually adjusting the parameters θ to maximize the average J(θ) across
environments, using a policy gradient algorithm (Appendix D.2; Sutton and Barto, 2018; Wang
et al., 2018). In Equation 5.4, K refers to the total number of iterations in an episode, with each
episode terminating once t exceeded the episode duration of T = 20 seconds as in the human
data (Figure 5.1B). Since our agent had no intrinsic notion of wallclock time, we considered
each discrete action to consume ∆t= 400 ms, meaning that there was time for 50 actions in a
single RL episode. This was calculated to approximately match the number of actions taken in
a typical RL episode to the human data. In this canonical formulation, the RL agent always
takes an instantaneous action in response to a given set of inputs. It therefore does not have
any ability to perform temporally extended planning, implying constant (zero) ‘thinking time’
in all situations. As a consequence, such a canonical meta-RL agent cannot explain the salient

5.2 Results 79

patterns of thinking times observed in human participants (recall Figure 5.2C). At first glance,
temporally extended planning might also appear unnecessary in the RL agent, since it already
has access to the current state, wall configuration, and reward information needed for decision
making. However, this was also the case for our human participants, who chose to spend
time thinking nonetheless. We hypothesized that the RL agent could similarly benefit from
the ability to trade off time for additional processing of the available information in difficult
tasks, where the agent has not learned a perfect policy (Hamrick et al., 2017; Pascanu et al.,
2017).

To investigate the effect of such thinking for recurrent meta learners and account for the
observed variability in human thinking times, we augmented the RL agent with the ability to
perform temporally extended planning in the form of imagined policy rollouts. Specifically,
we expanded the action space of the agent to give it the option of sampling a hypothetical
trajectory from its own policy at any moment in time (a ‘rollout’; Figure 5.1A; Hamrick et al.,
2017; Pascanu et al., 2017). In other words, the agent was allowed to either perform a physical
action, or to perform a mental simulation of its policy. If the agent chose to perform a rollout,
a flattened array of the imagined action sequence was fed back to the network as additional
inputs on the subsequent time step, together with an indication of whether or not the simulated
action sequence reached the goal. These inputs in turn affected the policy by modulating hhhk

through a set of learnable input weights (Figure 5.1A). This is reminiscent of canonical RL
algorithms that change their parameters θ to yield a new and improved policy on the basis of
trajectories sampled from the current policy. In our formulation of planning, the agent’s policy
is instead induced by the hidden state hhhk, which can similarly be modulated on the basis of the
imagined policy rollouts to improve performance.

Each rollout was terminated either upon reaching the goal, or after a maximum duration of 8
simulated actions (see Figure D.3 for different network sizes and maximum planning horizons).
Importantly, both the generation of a mental rollout and the corresponding success feedback
relied on an internal model of the environment that was obtained from the agent itself. This
internal model was trained alongside the RNN and the policy, by learning to predict the reward
location and state transitions from the momentary hidden state of the RNN (hhhk) and the
action taken (ak; Appendix D.2; Figure D.4). Thus, rollouts did not provide the agent with
any privileged information that it did not already possess. Instead, they allowed the agent to
trade off time for additional computational capacity – similar to thinking in humans and other
animals. Furthermore, to capture the fact that mental simulation is faster than physical actions
(Kurth-Nelson et al., 2016; Liu et al., 2019), we assumed each full rollout to consume only
120 ms. In other words, a single iteration of the network dynamics (k→ k+1 in Equation 5.1)
incremented time by 120 ms if the agent chose to perform a rollout and 400 ms if the agent
chose a physical action. This allowed the agent to perform many simulated actions in the time
it would take to physically move only a short distance (Agrawal et al., 2022). Importantly,

80 Reinforcement learning to plan

1 2 3 4
trial number

3

6

9

12
st

ep
s

to
 g

oa
l human

model
optimal

0 400 800
thinking time (ms)

0

20

40

 #
 a

ct
io

ns
 (x

10
00

)

response time (ms)0

20

40

1 3 5
step within trial

50

150

250

th
in

ki
ng

 ti
m

e
(m

s)

human
goal dist = 2
goal dist = 3
goal dist = 4
goal dist = 5

1 3 5
step within trial

0

100

200

th
in

ki
ng

 ti
m

e
(m

s)

model
goal dist = 2
goal dist = 3
goal dist = 4
goal dist = 5

0.25 0.50 0.75
π(rollout)

0
50

100
150
200
250

th
in

ki
ng

 ti
m

e
(m

s) data
shuffle

π(r
oll

ou
t)

go
al

dis
t

res
idu

al
0.0

0.1

0.2

0.3

co
rre

la
tio

n
w

ith
th

in
ki

ng
 ti

m
e

A C D

B E F

Figure 5.2 Trained RL agents perform more rollouts in situations where humans
spend longer thinking. (A) Performance – quantified as the number of actions needed to
reach the goal – as a function of trial number within each episode, computed for both human
participants (black) and RL agents (blue). Shading indicates standard error of the mean across
human participants (n= 94) or RL agents (n= 5) and mostly falls within the interval covered
by the solid lines. Gray line indicates optimal performance, computed separately for exploration
(trial 1) and exploitation (trials 2-4; Appendix D.2). (B) Distribution of human response times
(top) and thinking times (bottom), spanning ranges on the order of a second (Appendix D.2).
(C) Human thinking time as a function of the step-within-trial (x-axis) for different initial
distances to the goal at the beginning of the trial (lines, legend). Shading indicates standard
error of the mean across 94 participants. Participants spent more time thinking further from
the goal and before the first action of each trial (Figure D.2). (D) Model ‘thinking times’
separated by time-within-trial and distance-to-goal, exhibiting a similar pattern to human
participants. To compute thinking times for the model, each rollout was assumed to last 120 ms
as described in the main text. Shading indicates standard error of the mean across 5 RL agents.
(E) Binned human thinking time as a function of the probability that the agent chooses to
perform a rollout, π(rollout). Error bars indicate standard error of the mean within each bin.
Gray horizontal line indicates a shuffled control, where human thinking times were randomly
permuted before the analysis. (F) Correlation between human thinking time and the regressors
(i) π(rollout) under the model, (ii) distance-to-goal, and (iii) π(rollout) after conditioning on
distance-to-goal (‘residual’; Appendix D.2). Bars and error bars indicate mean and standard
error across human participants (n= 94).

since an episode had a fixed duration of 20 seconds, choosing to perform more rollouts had a
temporal opportunity cost by leaving less time for physical actions towards the goal.

Biologically, we interpret these mental simulations as prefrontal cortex (the RNN) interacting
with the hippocampal formation (the world model), which allows the agent to simulate a sequence
of state transitions from the current policy and evaluate their consequences. Importantly, while
we endowed the agent with the ability to perform policy rollouts, we did not build in any prior

5.2 Results 81

knowledge about when, how, or how much they should be used. The agent instead had to learn
this over the course of training on many different environments. Therefore, while the rollouts
phenomenologically resembled hippocampal forward replays by design, our computational model
allowed us to investigate (i) whether and how such rollouts can drive policy improvements, (ii)
whether their temporal patterns can explain human response times, and (iii) whether biological
replays appear to be implementing a similar computation.

The RL agent was trained by slowly adjusting its parameters θ over 8×106 episodes, sampled
randomly from 2.7×108 possible environment configurations. This implied that the majority of
environments seen at test time would be novel to the agent, requiring generalization across tasks.
Parameter adjustments followed the gradient of a cost function that combined terms designed
to (i) maximize the expected reward in Equation 5.4, (ii) learn the internal model by accurately
predicting the reward location and state transitions, and (iii) minimize a standard entropy
cost to encourage exploration (Appendix D.2; Wang et al., 2016). Importantly, parameters
were frozen after training, and the agent adapted to the wall configuration and goal location of
each new environment using only internal network dynamics (Duan et al., 2016; Wang et al.,
2018).

5.2.3 Human thinking times correlate with agent rollouts

Having specified our computational model of planning, we analyzed its behavior and compared
it to that exhibited by humans. We trained 5 copies of our RL agent to solve the same task as
the human participants and found that the agents robustly learned to navigate the changing
maze. Similar to humans, the trained agents exhibited a rapid transition from exploration
to exploitation upon finding the reward, reaching near-optimal performance in both phases
(Figure 5.2A, blue). This confirmed that these RNNs are capable of adapting to changing
environments using only internal network dynamics with fixed parameters, corroborating
previous work on recurrent meta-RL (Banino et al., 2018; Duan et al., 2016; Wang et al.,
2018). The trained networks also used their capacity to perform rollouts, choosing to do so
approximately 30% of the time. Importantly, there was temporal variability in the probability
of performing a rollout, and the networks sometimes performed multiple successive rollouts
between consecutive physical actions. When we queried the conditions under which the trained
agents performed these rollouts, we found striking similarities with the pattern of human
thinking times observed previously. In particular, the RL agent performed more rollouts earlier
in a trial and further from the goal (Figure 5.2D) – situations where the human participants
also spent more time thinking before taking an action (Figure 5.2C). On average, thinking
times in the RL agent were approximately 50 ms lower than in humans. This difference could
e.g. be due to (i) the choice of prior in the probabilistic model used to infer human thinking

82 Reinforcement learning to plan

times, (ii) the agent having a better ‘base policy’ than humans, or (iii) the hyperparameters
determining the temporal cost of planning.

To further study the relationship between rollouts and human ‘thinking’, we simulated the
RL agent in the same environments as the human participants. We did this by clamping the
physical actions of the agent to those taken by the participants, while still allowing it to sample
on-policy rollouts (Appendix D.2). In this setting, the agent’s probability of choosing to perform
a rollout when encountering a new state, π(rollout), was a monotonically increasing function of
human thinking time in the same situation (Figure 5.2E). The Pearson correlation between these
two quantities was r = 0.186±0.007 (mean ± sem across participants), which was significantly
higher than expected by chance (Figure 5.2F, ‘π(rollout)’; chance level r = 0± 0.004). An
above-chance correlation between thinking times and π(rollout) of r = 0.070±0.006 persisted
after conditioning on the distance-to-goal (Figure 5.2F, ‘residual’), which was also correlated
with thinking times (r = 0.272±0.006). The similarity between planning in humans and RL
agents thus extends beyond this salient feature of the task, including an increased tendency to
plan on the first step of a trial (Figure D.2).

In addition to the similarities during the exploitation phase, a significant correlation was also
observed between human thinking time and π(rollout) during exploration (r = 0.098±0.008).
In this phase, both humans and RL agents spent more time thinking during later stages of
exploration (Figure D.5). Model rollouts during exploration corresponded to planning towards
an imagined goal from the posterior over goal locations, which becomes narrower as more
states are explored (Figure D.5). This finding suggests that humans may similarly engage in
increasingly goal-directed behavior as the goal posterior becomes narrower over the course
of exploration. Taken together, our results show that a meta-reinforcement learning agent,
endowed with the ability to perform rollouts, learns to do so in situations similar to when
humans appear to plan. This provides a putative normative explanation for the variability in
human thinking times observed in the dynamic maze task.

Participants also exhibited a bias against moving through the periodic boundaries of the arena,
with human participants at a boundary being 1.84± 0.03 times as likely to move into the
arena as they were to move through the boundary (mean ± standard error across participants).
To capture this bias in our computational model, we replaced the standard policy entropy
regularization with a KL regularization term that discouraged moving through the boundaries,
which can be interpreted as a form of ‘prior over actions’ (Section 2.5, Appendix D.2). Such
a prior will lead to the presence of a similar bias against moving through boundaries in the
model behavior by design. Interestingly, introducing this bias also resulted in a stronger residual
correlation between human thinking times and model thinking times after regressing out the
effect of distance-to-goal, and it led to a stronger correlation between model and human thinking
times during exploration (Figure D.6). We interpret this as the introduction of an action prior
leading to a different notion of what constitutes a ‘difficult’ or ‘far away’ state for a given arena,

5.2 Results 83

which is more consistent with the human notion of what constitutes a difficult state. This
suggests that humans solving sequential decision making tasks may make use of similar priors
learned from previous tasks, which can lead to particular biases and structured reaction times
when encountering a new task.

5.2.4 Rollouts improve the policy of the RL agent

In the previous section, we saw that an RL agent can learn to use policy rollouts as part of its
decision making process, and that the timing and number of rollouts correlates with variability
in human thinking times. In this section, we aim to understand why the agent chooses to
perform rollouts and how they guide its behavior. To do this, we considered the agent right
after it first located the goal in each episode (i.e., at the first time step of trial 2; Figure 5.1B)
and forced it to perform a pre-defined number of rollouts, which we varied. We then quantified
the number of actions that the agent took to return to the goal while preventing any further
rollouts during this return phase (Appendix D.2).

The average number of actions needed to reach the goal decreased monotonically as the number
of forced rollouts increased up to at least 15 rollouts (Figure 5.3A). Interestingly, this was
the case despite the unperturbed behavior of the agent rarely including more than a few
consecutive rollouts (Figure 5.2D), suggesting that the agent learned a robust algorithm for
policy optimization on the basis of such rollouts (Hamrick et al., 2017; Schrittwieser et al.,
2020). The increase in performance with rollout number was also associated with a concomitant
decrease in policy entropy (Figure 5.3B). Thus, performing more rollouts both improved
performance and increased the agent’s confidence in its actions (Appendix D.2). These findings
confirm that the agent successfully learned to use policy rollouts to optimize its future behavior.
However, the question remains of whether this policy improvement is appropriately balanced
with the temporal opportunity cost of performing a rollout.

In general, performing a rollout is beneficial in situations where the policy improvement resulting
from the rollout is greater than the temporal cost of 120 ms of performing the rollout. To
investigate whether the agent learned to trade off the cost and benefit of rollouts (Agrawal
et al., 2022; Hamrick et al., 2017; Pascanu et al., 2017), we computed the performance of
the agent in a surrogate environment where rollouts were not allowed. In this setting, each
action was instead sampled from the distribution over physical actions only (Appendix D.2).
When preventing rollouts in this way, the agent only collected 6.54±0.11 rewards per episode
compared to 7.54± 0.03 in the presence of rollouts (mean ± standard error across agents),
confirming that it used rollouts to increase expected reward (Figure 5.3C). To investigate
whether the temporal structure of rollouts described in Figure 5.2 was important for this
performance improvement, we performed an additional control, where the number of rollouts
was kept fixed for each environment, but their occurrence was randomized in time. In this case,

84 Reinforcement learning to plan

0 5 10 15
rollouts

3

4

5

st
ep

s
to

 g
oa

l agent
optimal

0 5 10 15
rollouts

0

1

en
tro

py
 (n

at
s)

agent
uniform

rol
lou

t

no
 ro

ll
6

7

8

av
g.

 re
w

ar
d

successful
unsuccessful

pre post

0.1

0.3

0.5

0.7

π(
̂ a 1
)

succ.

pre post

A B C D E unsucc.

Figure 5.3 Rollouts improve the network policy. (A) Performance on trial 2 as a function
of the number of rollouts enforced at the beginning of the trial. Performance was quantified as
the average number of steps needed to reach the goal in the absence of further rollouts. Gray
horizontal line indicates optimal performance. (B) Policy entropy as a function of the number
of rollouts enforced at the beginning of trial 2. The entropy was computed after re-normalizing
the policy over the four ‘physical’ actions, and the horizontal gray line indicates the entropy of
a uniform policy. (C) Original performance of the RL agent (left) and its performance when
re-normalizing the policy over physical actions to prevent any rollouts (right). Performance was
quantified as the average number of rewards collected per episode, and dashed lines indicate
individual RL agents, while the solid line indicates mean and standard error across agents.
(D) Schematic showing an example of a ‘successful’ (dark blue) and an ‘unsuccessful’ (light
blue) rollout from the same physical location (blue circle). Black cross indicates the goal
location (not visible to the agent or human participants). (E) Probability of taking the first
simulated action of the rollout, â1, before (πpre(â1)) and after (πpost(â1)) the rollout. This was
evaluated separately for successful (left) and unsuccessful (right) rollouts. πpre(â1) was above
chance (gray line) in both cases and increased for successful rollouts, while it decreased for
unsuccessful rollouts. Error bars represent standard error across five independently trained
agents. The magnitude of the change in π(â1) for successful and unsuccessful rollouts depended
on the planning horizon (Figure D.3).

performance dropped to 6.75±0.04 rewards per episode, confirming that the RL agent chose to
use rollouts specifically when they improved performance.

To further dissect the effect of rollouts on agent behavior, we classified each rollout, τ̂ (a
sequence {â1, â2, . . .} of rolled-out actions), as being either ‘successful’ if it reached the goal
according to the agent’s internal world model, or ‘unsuccessful’ if it did not (Figure 5.3D). We
hypothesized that the policy improvement observed in Figure 5.3A could arise from upregulating
the probability of following a successful rollout and downregulating the probability of following
an unsuccessful rollout. To test this hypothesis, we enforced a single rollout after the agent first
found the reward and analyzed the effect of this rollout on the policy, separating the analysis
by successful and unsuccessful rollouts. Importantly, we could compare the causal effect of
rollout success by matching the history of the agent and performing rejection sampling from the
rollout process until either a successful or an unsuccessful rollout had occurred (Appendix D.2).
Specifically, we asked how the rollout affected the probability of taking the first rolled-out action,
â1, by comparing the value of this probability before (πpre(â1)) and after (πpost(â1)) the rollout.
πpre(â1) was slightly higher for successful rollouts than unsuccessful rollouts, with both types of

5.2 Results 85

rollouts exhibiting a substantially higher-than-chance probability – a consequence of the model
rollouts being drawn ‘on-policy’ (Figure 5.3E). However, while successful rollouts increased
π(â1), unsuccessful rollouts decreased π(â1) (Figure 5.3E). This finding demonstrates that the
agent combines the spatial information of a rollout with knowledge about its consequences,
based on its internal world model, to guide future behavior.

5.2.5 Hippocampal replays resemble policy rollouts

In our computational model, we designed policy rollouts to take the form of spatial trajectories
that the agent could subsequently follow, and to occur only when the agent was stationary. These
two properties are also important signatures of forward hippocampal replays – patterns of neural
activity observed using electrophysiological recordings from rodents during spatial navigation
(Gillespie et al., 2021; Pfeiffer and Foster, 2013; Widloski and Foster, 2022). Our model therefore
allowed us to investigate whether forward replay in biological agents serve a similar function
during decision making to the function of policy rollouts in our RL agent. Additionally, since
we have direct access to the agent’s policy and how it changes after a replay, our computational
model can provide insights into the apparently conflicting data and contradictory viewpoints in
the literature regarding the role of hippocampal replays. In particular, some studies have found
a significant correlation between forward replay and subsequent behavior (Foster, 2017; Pfeiffer
and Foster, 2013; Widloski and Foster, 2022), arguing that such a correlation suggests a role of
forward replay for planning. On the contrary, other studies have found that forward replays
do not always resemble subsequent behavior (Gillespie et al., 2021; Krause and Drugowitsch,
2022; Wu et al., 2017b), challenging the interpretation of forward replay as a form of planning.
Our model offers a potentially conciliatory explanation, predicting that the correlation between
forward replay and subsequent behavior can be positive or negative, depending on the replayed
trajectory (Figure 5.3E; Yu and Frank, 2015; Antonov et al., 2022).

To investigate whether there is evidence for such replay-based modulation of animal behavior,
we re-analyzed a recently published hippocampal dataset from rats navigating a dynamic
maze very similar to the task in Figure 5.1B (Widloski and Foster, 2022). Our goal was to
compare the recorded replay events to the policy rollouts exhibited by the RL agent, considering
both the statistical properties of the replays themselves and how they relate to subsequent
behavior. In this rodent experiment, animals had to repeatedly return to an initially unknown
‘home’ location, akin to the goal in our task (Figure D.7). Both this home location and the
configuration of the maze changed between sessions. Whilst the behaving animals could not be
‘teleported’ between trials as in our task, rats instead had to navigate to an unknown rewarded
‘away’ location selected at random after each ‘home’ trial. These ‘away’ trials served as a useful
control since the animals did not know the location of the rewarded well at the beginning of
the trial.

86 Reinforcement learning to plan

We studied replay events detected in hippocampal recordings made with tetrode drives during
the maze task (n ∈ [187,333] simultaneously recorded neurons per session; Figure D.7C). To
detect replays, we followed Widloski and Foster (2022) and first trained a Bayesian decoder to
estimate the animal’s position on a discretized grid from the neural data during epochs when the
animal was moving. We then applied this decoder during epochs when the animal was stationary
at a reward location before initiating a new trial and defined replays as consecutive sequences
of at least three adjacent decoded grid locations (Figure 5.4A; Figure D.7; see Appendix D.2
for details).

Similar to previous work (Widloski and Foster, 2022), we found that the hippocampal replays
avoided passing through walls to a greater extent than expected by chance (Figure 5.4B;
p < 0.001, permutation test). This finding suggests that hippocampal replays are shaped by a
rapidly updated internal model of the environment, similar to how forward rollouts in our RL
agent are shaped by its internal world model (Figure 5.1A). Additionally, the goal location was
overrepresented in the hippocampal replays, consistent with the assumption of on-policy rollouts
in the RL agent (Figure 5.4C; p < 0.001, permutation test; Widloski and Foster, 2022).

Inspired by our findings in the RL agent, we proceeded to investigate whether a replayed action
was more likely to be taken by the animal if the replay was successful than if it was unsuccessful.
Here, we defined a ‘successful’ replay as one which reached the goal location without passing
through a wall (Figure 5.4A). Consistent with the RL model, we found that the first simulated
action in the replay agreed with the next physical action more often for successful replays than
for unsuccessful replays (Figure 5.4D, black; p < 0.001, permutation test). Such an effect was
not observed in the ‘away’ trials (Figure 5.4D, gray; p= 0.129, permutation test), where the
animals had no knowledge of the reward location and therefore could not know what constituted
a successful replay. These findings are consistent with the hypothesis that successful replays
should increase the probability of taking the replayed action, while unsuccessful replays should
decrease this probability.

In the RL agent, we have direct access to the momentary policy and could therefore quantify
the causal effect of a replay on behavior (Figure 5.3E). However, in the biological circuit, we
cannot know whether the increased probability of following the first action of a successful replay
is because the replay altered the policy (as in the RL agent), or whether the replay reflects a
baseline policy that was already more likely to reach the goal prior to the replay. To circumvent
this confound, we analyzed consecutive replays while the animal remained stationary. If our
hypotheses hold, that (i) hippocampal replays resemble on-policy rollouts of an imagined action
sequence, and (ii) performing a replay improves the policy, then consecutive replays should
become increasingly successful even in the absence of any behavior between the replays.

To test this prediction, we considered trials where the animal performed a sequence of at least
3 replays at the ‘away’ location before moving to the ‘home’ location. We then quantified the

5.2 Results 87

successful
unsuccessful

true ctrl
0.0

0.2

0.4

p(
cr

os
s

w
al

l)

experiment

true ctrl

model

true ctrl
0.0

0.2

0.4

0.6

0.8

p(
go

al
)

experiment

true ctrl

model

succ un
0.0

0.2

0.4

0.6

0.8

p(
a 1

=
̂ a 1
)

home
trials

succ un

away
trials

succ un

model

1 2 3
replay #

1.0

1.2

1.4

ov
er

-re
pr

es
en

ta
tio

n

experiment

1 2 3
replay #

1.4

1.6

A B C

D E model

Figure 5.4 Hippocampal replays resemble model rollouts. (A) Illustration of experi-
mental task structure and example replays (Widloski and Foster, 2022). Each episode had a
different wall configuration and a randomly sampled home location (cross). Between each ‘home’
trial, the animal had to move to an ‘away’ location, which was sampled anew on each trial (black
circles). Colored lines indicate example replay trajectories originating at the blue dots. Replays
were detected during the stationary periods at the away locations before returning to the home
location and classified according to whether they reached the home location (dark vs. light blue
lines). (B) Fraction of replay transitions that pass through a wall in the experimental (black)
and model (blue) data. Control values indicate the fraction of wall crossings in re-sampled
environments with different wall configurations. Dashed lines indicate individual animals or
RL agents, and solid lines indicate mean and standard error across animals or RL agents.
(C) Fraction of replays that pass through the goal location in experimental (black) and model
(blue) data. Control values indicate the average fraction of replays passing through a randomly
sampled non-goal location. Dashed and solid lines are as in (B). See Figure D.8 for an analogous
analysis of the away trials, where the goal was unknown. (D) Probability of taking the first
replayed action, p(a1 = â1), for successful and unsuccessful replays during home trials (left;
black), away trials (center; gray), and in the RL agent (right; blue). Bars and error bars indicate
mean and standard error across sessions or RL agents. (E) Over-representation of successful
replays during trials with at least three replays in the experimental data (left) and RL agents
(right). The over-representation increased with replay number; an effect not seen in the away
trials (Figure D.8). Over-representation was computed by dividing the success frequency by
a reference frequency computed for randomly sampled alternative goal locations. Error bars
indicate standard error across replays pooled from all animals (left) or standard error across
five independently trained agents (right; dashed lines).

fraction of replays that were successful as a function of the replay index within the sequence,
after regressing out the effect of time (Appendix D.2; Ólafsdóttir et al., 2017). We expressed
this quantity as the degree to which the true goal was over-represented in the replay events by
dividing the fraction of successful replays by a baseline calculated from the remaining non-goal
locations, such that an over-representation of 1 implies that a replay was no more likely to be

88 Reinforcement learning to plan

successful than expected by chance. Compellingly, this over-representation increased with each
consecutive replay during the home trials (Figure 5.4E; left), and both the second and third
replays exhibited substantially higher over-representation than the first replay (p= 0.068 and
p= 0.009 respectively; permutation test; Appendix D.2). Such an effect was not seen during
the away trials, where the rewarded location was not known to the animal (Figure D.8).

These findings are consistent with a theory in which replays represent on-policy rollouts that
are used to iteratively refine the agent’s policy, which in turn improves the quality of future
replays – a phenomenon also observed in the RL agent (Figure 5.4E, right). In the RL agent,
this effect could arise in part because the agent is less likely to perform an additional rollout
after a successful rollout than after an unsuccessful rollout (Figure D.9). To eliminate this
confound, we drew two samples from the policy each time the agent chose to perform a rollout,
and we used one sample to update the hidden state of the agent, while the second sample was
used to compute the goal over-representation (Appendix D.2). Such decoupling is not feasible
in the experimental data, since we cannot read out the ‘policy’ of the animal. This leaves open
the possibility that the increase in goal over-representation with consecutive biological replays
is in part due to a reduced probability of performing an additional replay after a successful
replay. However, we note that (i) the rodent task was not a ‘reaction time task’, since a 5-15 s
delay was imposed between each trial. This makes a causal effect of replay success on the total
number of replays less likely. (ii) if such an effect does exist, that is in itself consistent with a
theory in which hippocampal replays guide planning.

5.2.6 RL agents use rollouts to optimize their hidden state

We have now seen that both biological and artificial agents appear to use policy rollouts to
influence behavior in a way that depends on the content of the rollout. However, it remains to
be understood (i) whether such an algorithm formally increases the expected reward, and (ii)
how it is implemented mechanistically – a question we can address in the trained RL agent. In
this section, we show that our theory has a firm theoretical grounding and makes quantitative
predictions about the neural implementation of planning in PFC. Previously, we showed that
the agent up- or downregulated the probability p(τ = τ̂) of actually performing a rolled-out
sequence τ̂ depending on the ‘goodness’ of the rollout (Figure 5.3E). This is reminiscent of
canonical policy-gradient RL algorithms. These algorithms consider putative on-policy action
sequences τ and apply parameter updates that cause p(τ) to increase under the agent’s policy if
τ led to more reward than expected, and to decrease otherwise. In our trained agent, adaptation
to each new maze does not involve modifications of the fixed network parameters but instead
occurs through changes to the hidden state hhhk. We therefore hypothesized that the performance
improvements resulting from policy rollouts (Figure 5.3A; Figure 5.4E) were achieved through

5.2 Results 89

iterative modifications of hhhk that approximated policy gradient ascent on the expected future
reward in the episode as a function of hhhk (Figure 5.5A).

To test this hypothesis, we considered each rollout performed by the RL agent and computed
both (i) the actual hidden state update performed by the RL agent on the basis of this rollout,
and (ii) the expected hidden state update computed by applying the policy gradient algorithm
to the same rollout (Figure 5.5B; Appendix D.2). Our theory predicts that rollouts should
change hhhk in a way that increases p(τ = τ̂) if the rollout is better than some baseline and
decreases p(τ = τ̂) otherwise. Since we do not know the baseline, we performed our analysis
by taking the derivative of the hidden state change with respect to the expected reward from
physically following τ̂ , Rτ̂ , which is independent of the baseline (Appendix D.2). This allowed
us to define (i) a quantity αααPG := ∂∆hhhPG

∂Rτ̂
that predicts how the hidden state should change

as a function of Rτ̂ in the policy gradient formulation, and (ii) the corresponding quantity
αααRNN := ∂∆hhhRNN

∂Rτ̂
that indicates how the hidden state actually changed as a function of the

content of the rollout. If the agent performs approximate policy gradient ascent in hidden state
space, αααRNN should be aligned with αααPG.

To investigate whether the response of the RNN to a rollout was consistent with this theory,
we began by considering the effect on its hidden state of the first action in the rollout, â1.
We did this by querying the alignment between (i) αααRNN computed across rollouts from 1,000
episodes, and (ii) αααPG

1 computed from the same rollouts when considering only the probability
of executing â1. To visualize this alignment, we performed PCA on {αααPG

1 } from all rollouts
and projected both αααPG

1 and αααRNN into this low-dimensional subspace. We then computed the
average of each of these two quantities for each simulated action â1 ∈ {left,right,up,down}. We
found that the average value of αααRNN was strongly aligned with the average value of αααPG

1 for
each action (Figure 5.5C), consistent with the theory outlined above. Importantly this means
that Rτ̂ has different effects on the policy depending on the replayed trajectory τ̂ . In other
words, the spatial content of the rollout dynamically modulates the way in which the reward
signal from the rollout affects the hidden state and policy of the agent.

To quantify the overlap between αααRNN and αααPG
1 on a rollout-by-rollout basis, we computed

the average cosine similarity d between αααRNN and αααPG
1 across all rollouts. This overlap was

substantially larger than zero (d= 0.39±0.01 mean ± sem; Figure 5.5D, left). When instead
computing the overlap with αααRNN

ctrl computed after changing the feedback input to falsely
inform the agent that it simulated a different action â1,ctrl ̸= â1, the corresponding value was
d=−0.11±0.004. This confirms that hhhk is optimized by incorporating the specific feedback
input obtained from the rollout, and the negative sign reflects anti-correlations due to the policy
being a normalized distribution over actions. For these analyses, we only considered the first
simulated action â1. When instead querying the effect of the rollout on subsequent actions in
τ̂ , we found that the feedback input was also propagated through the network dynamics to

90 Reinforcement learning to plan

PC 1

PC
 2

PC
 3

αPG
1 αRNN

αRNN αRNN
ctrl

0.0

0.2

0.4

co
sθ

1st action

αRNN αRNN
ctrl

2nd action

0 4 8
mean reward

0.0

0.2

0.4

0.6

p(
ro

llo
ut

)

60
80
100

state
h1

rollout
τ̂ , Rτ̂

∆hRNN new state
hRNN

2

dynamics
of the
RNN

∆hPGnew state
hPG

2

policy
gradient

prediction

future
reward

statedim. 1
state

dim. 2
h1

hRNN
2

hPG
2

A B

C D E

Figure 5.5 Rollouts implement a hidden state optimization. (A) The hidden state
hhhk of the RNN induces a policy with an expected future reward for the current episode.
Rollouts can improve performance by shifting hhh to a region of state space with higher reward
(hhh1 → hhhRNN

2). The policy gradient algorithm estimates the direction of steepest ascent of
the expected reward (hhh1→ hhhPG

2). (B) We wanted to compare this theoretical hidden state
update ∆hhhPG := hhhPG

2 −hhh1 to the empirical hidden state update ∆hhhRNN := hhhRNN
2 −hhh1 actually

performed by the network dynamics on the basis of a rollout τ̂ and its associated reward Rτ̂ .
(C) A latent space was defined by performing PCA on αααPG

1 – the effect of Rτ̂ on hhhk under the
policy gradient algorithm. Solid lines and circles indicate the normalized average αααPG

1 for each
of the four possible simulated actions (â1; colors). Dashed lines indicate the normalized average
value of αααRNN for the corresponding action, which is aligned with αααPG

1 in accordance with the
theory. The first 3 PCs capture 100% of the variance in αααPG

1 , since the policy is normalized
and therefore only has three degrees of freedom. (D) Average cosine similarity between αααRNN

and αααPG
1 , quantified in the space spanned by the top 3 PCs of αααPG

1 (see text for details). αααRNN

was computed using the true input, while αααRNN
ctrl was computed after altering the feedback from

the rollout to falsely inform the agent that it had simulated a different action â1,ctrl ̸= â1. This
confirms that the observed alignment is mediated by the input from the rollout. Left panel
considers the effect of Rτ̂ on the first action (αααPG

1) and right panel considers the effect of Rτ̂

on the second action (αααPG
2). (E) We trained networks of different sizes (legend) and quantified

both their performance (x-axis) and frequency of performing a rollout (y-axis) over the course
of training (Figure D.10). To reach a given performance, we found that smaller networks relied
more on rollouts, suggesting that the RL agents learn to plan in part because they are capacity
limited. Additionally, the agents learned to rely less on rollouts late in training as they became
increasingly good at the task, suggesting that they also plan because they are data limited.

these later actions (Figure 5.5D, right). These analyses confirm that policy rollouts consistently
move the hidden state of the agent in the direction of the policy gradient.

5.3 Discussion 91

5.3 Discussion

We have developed a new theory of planning in the prefrontal-hippocampal network, implemented
as a recurrent neural network model and instantiated in a spatial navigation task requiring
multi-step planning (Figure 5.1). Our model consists of a recurrent meta-reinforcement learning
agent augmented with the explicit ability to plan using policy rollouts. We showed that this
model provides a compelling account of human behavior in our task, where it explains the
structure observed in human thinking times (Figure 5.2). These results suggest that planning
using mental rollouts could constitute a major component underlying the striking human ability
to adapt rapidly to new information and changing environments, where it allows agents to refine
their behavior without incurring the potentially large cost of overtly executing suboptimal
actions. Since mental simulation is generally faster and more efficient than physically interacting
with the world (Vul et al., 2014), this allows agents to improve their overall performance despite
the temporal opportunity cost of such simulation (Figure 5.3; Agrawal et al., 2022; Hamrick
et al., 2017).

Our theory also suggests an important role of hippocampal replays during sequential decision
making. By re-analyzing recordings from the rat hippocampus during a navigation task, we
found that patterns of hippocampal replays and their relationship to behavior resembled the
rollouts used by our model (Figure 5.4). These results suggest that hippocampal forward replays
could be a manifestation of a planning process, and that the mechanistic insights derived from
our model could generalize to biological circuits. In particular, we hypothesize that forward
replays should have different effects on subsequent behavior depending on whether they lead to
high-value or low-value states (Figure 5.3; Wu et al., 2017b). This hypothesis is consistent with
previous models, where hippocampal replay is used to update state-action values that shape
future behavior (Mattar and Daw, 2018). We suggest that forward replay implements planning
through feedback to prefrontal cortex that drives a ‘hidden state optimization’ reminiscent of
recent models of motor preparation (Figure 5.5; Kao et al., 2021b). This differs from prior
work in the reinforcement learning literature, since our model does not involve arbitration
between model-free and model-based policies computed separately (Daw et al., 2005; Geerts
et al., 2020). Instead, model-based computations iteratively update a single policy that can be
used for decision making at different stages of refinement.

5.3.1 Neural mechanisms of planning and decision making

Our model raises several interesting hypotheses about neural dynamics in hippocampus and
prefrontal cortex and how these dynamics affect behavior. One is that hippocampal replays
should causally affect the behavior of an animal as also suggested in previous work (Foster,
2017; Pfeiffer and Foster, 2013; Widloski and Foster, 2022). However, as noted previously

92 Reinforcement learning to plan

(Figure 5.4), this has been notoriously difficult to test in experiments due to the confound of
how the behavioral intentions of the animal itself affect the content of hippocampal replays
(Foster, 2017). Perhaps more interestingly, we predict that hippocampal forward replays
should directly drive a change in PFC representations, consistent with previous work showing
coordinated activity between hippocampus and PFC during sharp-wave ripples (Jadhav et al.,
2016). Crucially, we also predict how PFC representations should change during planning
depending on the spatial content and expected reward of a replay. These predictions could be
investigated in experiments that record neural activity simultaneously from hippocampus and
PFC, where both the timing and qualitative change in PFC representations can be related to
the occurrence of replays in hippocampus.

To enable more detailed mechanistic predictions, our model could be extended in several ways.
First, we have modeled the prefrontal network as a single fully connected network. In contrast,
the brain relies on several connected but distinct circuits, all of which serve specialized functions
that together give rise to the representations and dynamics driving human behavior. To
understand these collective dynamics, it will therefore be interesting to extend our approach to
modular models inspired by the architecture of multi-area networks. Second, our implementation
of rollouts in the agent took the form of an abstract simulation process, where the underlying
neural dynamics were not explicitly modeled. To better understand the mechanisms through
which PFC interacts with other brain areas during planning, it will be important to model
the whole rollout process as multi-area neural dynamics. Finally, while we propose a role of
hippocampal replays in shaping immediate behavior via recurrent network dynamics, this is
compatible with replays also having other functions, such as memory consolidation (Carr et al.,
2011; van de Ven et al., 2016) or dopamine-driven synaptic plasticity over longer timescales
(De Lavilléon et al., 2015; Gomperts et al., 2015).

5.3.2 Alternative planning algorithms

Planning in the RL agent was carried out explicitly in the space of observations. While this
was already an abstract representation rather than pixel-level input, it could be interesting
to explore planning in a latent space optimized e.g. to predict future observations (Zintgraf
et al., 2019) or future policies and value functions (Ho et al., 2022; Schrittwieser et al., 2020).
These ideas have proven useful in the machine learning literature, where they allow models to
ignore details of the environment not needed to make good decisions, and it is plausible that
the internal model of humans similarly does not include such task-irrelevant details. We also
assumed that the planning process itself was ‘on policy’ – that is, the policy that was used
to sample actions in the planning loop was identical to the policy used to act in the world.
Although there is some support from the hippocampal replay data that forward replays are
related to the ‘policy’ (e.g. wall avoidance and goal over-representation; Figure 5.4), there is

5.3 Discussion 93

in theory nothing that prevents the planning policy from differing arbitrarily from the action
policy. In fact, the planning policy could even be explicitly optimized to yield good plans rather
than re-using a policy optimized to yield good behavior (Pascanu et al., 2017). Such off-policy
hippocampal sequence generation has also formed the basis of other recent theories of the role
of hippocampus in planning and decision making (Mattar and Daw, 2018; McNamee et al.,
2021). In this case, the policy gradient view of rollouts still provides a natural language for
formalizing the planning process, since numerous off-policy extensions of the canonical policy
gradient algorithm exist (Jie and Abbeel, 2010; Peshkin and Shelton, 2002).

5.3.3 Why do we spend time thinking?

Finally, while both humans and our RL agents made extensive use of planning, it is worth
noting that mental simulation does not generate any new information about the world. In
theory, it should therefore be possible to make equally good ‘reflexive’ decisions given enough
computational power. This raises the question of why we rely on planning in the first place –
in other words, what is the reason that decision making often takes time rather than being
instantaneous? One possible reason could be that our decision making system is capacity limited,
such that it does not have enough computational power to generate the optimal policy (Russek
et al., 2022). In our computational model, this is supported by the observation that agents
consisting of smaller RNNs tend to perform more rollouts than larger agents (Figure 5.5E).
Alternatively, we could be data limited, meaning that we have not received enough training to
learn the optimal policy. This also has support in our computational model, where networks of
all sizes perform many rollouts early in training, when they have only seen a small amount of
data, and gradually transition to a more reflexive policy that relies less on rollouts (Figure 5.5E;
Figure D.10).

We hypothesize that data limitations are a major reason for the use of temporally extended
planning in animals. In particular, we reason that learning the instantaneous mapping from
states to actions needed for reflexive decisions would require a prohibitive amount of training data,
which is generally not available for real-life scenarios. Indeed, training our meta-reinforcement
learner required millions of episodes, while humans were immediately capable of solving the
maze task from only a simple task description and demonstration. Such rapid learning could
be due in part to the use of temporally extended planning algorithms as a form of ‘canonical
computation’ that generalizes across tasks. If this is the case, we would be able to rely on generic
planning algorithms acquired over the course of many previous tasks in order to solve a new
task. When combined with a new task-specific transition function learned from relatively little
experience or inferred from sensory inputs, planning would facilitate data-efficient reinforcement
learning by allowing the agent to trade off processing time for a better policy (Schrittwieser
et al., 2020). This is in contrast to our current model, which had to learn from scratch both

94 Reinforcement learning to plan

the structure of the environment and how to use rollouts to shape its behavior. Importantly,
planning as a canonical computation could generalize not just to other navigation tasks but
also to other domains, such as compositional reasoning and sequence learning, where replay
has recently been demonstrated in humans (Liu et al., 2019, 2021; Schwartenbeck et al., 2021).
Further exploring these ideas will be an exciting avenue for future work.

Chapter 6

Discussion

Machine learning as a tool for systems neuroscience has undoubtedly come to stay. This toolbox
has provided researchers with a wealth of new methods for analyzing, modelling, and interpreting
the high-dimensional and noisy data that we are often faced with as neuroscientists. Bayesian
approaches to machine learning have proven particularly influential in systems neuroscience,
providing elegant methods for building inductive biases into our data analysis methods, and for
capturing the biases of humans and other animals themselves.

Throughout this thesis, we have developed several such models that allow us to better understand
the neural dynamics and computations underlying natural behaviours. First, we developed
two new latent variable models that allow us to infer the dimensionality and topology of
neural population recordings. This is useful since neural recordings are becoming increasingly
high-dimensional, while it is hypothesized that the underlying quantities being represented in
such high-dimensional data remain low-dimensional (Chaudhuri et al., 2019; Gallego et al.,
2017; Humphries, 2020). While we have demonstrated applications of these methods to neural
circuits involved in both motor control and navigation, we expect that they will also yield
new insights in more cognitive domains, where low-dimensional representations of task-relevant
variables have recently been demonstrated in e.g. the hippocampus of mice engaged in an
evidence integration task (Nieh et al., 2021).

We then developed a new method for continual learning using approximate Bayesian inference
and demonstrated how different algorithmic approaches to the continual learning problem
yield different predictions for neural dynamics. We believe that this distinction between
different classes of continual learning algorithms will be important in the field of neuroscience,
where much uncertainty remains about the algorithmic solutions to the continual learning
problem in biological systems (Clopath et al., 2017; Rule et al., 2019). In particular, we hope
that comparisons with strong machine learning models can help disentangle the differences
in representational drift between different neural circuits, and perhaps point to different
mechanisms underlying the retention of memories across brain regions and organisms.

Finally, we developed a new reinforcement learning model, which was explicitly endowed with the
ability to perform open-loop policy rollouts. We saw how this captures the important property
of ‘planning’ in humans and demonstrated notable similarities with rodent hippocampal replays.
The model learned to use such rollouts to perform a hidden state optimization, which can itself
be considered a form of policy inference (Botvinick and Toussaint, 2012; Levine, 2018; Solway

96 Discussion

and Botvinick, 2012). In this case, however, the policy is parameterized by the hidden state of
the network rather than the network parameters. This provides a new view of hippocampal
replays as a form of inference process that allows for iterative updates of a policy stored in
prefrontal cortex.

Together, these advances illustrate how approaches from Bayesian machine learning can be
valuable both for analyzing the increasingly large datasets recorded in modern neuroscience,
and for generating mechanistic and algorithmic hypotheses of how the brain solves the many
challenging problems facing biological organisms. However, while probabilistic machine learning
has been an essential tool for systems neuroscience in the past decade, it remains an open
question whether this will continue to be the case in years to come. In particular, since deep
learning has replaced Bayesian models for many applications in the machine learning literature,
it is relevant to ask whether this will also be the case in neuroscience. As data sizes start
increasing, Bayesian machine learning for data analysis may indeed become less important –
similar to the recent trend towards more scalable machine learning applications in e.g. text
and image processing (Dosovitskiy et al., 2020; Vaswani et al., 2017). In fact transformers –
a modern architecture that is dominating machine learning – are already beginning to make
their advances for neural data analysis (Ye and Pandarinath, 2021), where they can provide
a powerful way of learning the relationships between large neural datasets and observed or
unobserved regressors. Such methods may be particularly useful for application-driven domains
such as brain-computer interfaces (Willett et al., 2021), where quantitative ‘test performance’
is paramount.

However, in data analysis for systems neuroscience, we often care as much about interpretability
as we do about quantitative performance. This is because we fundamentally care about
understanding how the brain solves computational problems – and this question is easier to
answer with methods that are interpretable, e.g. by directly building in notions of topology or
dimensionality. Additionally, strong models of neural data, such as those developed in Chapter 4
and Chapter 5, are not driven by considerations of quantitative benchmarking. Instead, they
have been driven by a fundamental belief that biological brains perform approximately Bayesian
computations, and that probability theory is therefore the right language with which to describe
and understand neural dynamics. For these reasons, we believe that Bayesian machine learning
will remain a critical tool in the toolbox of systems neuroscience, and that the insights gleaned
from these approaches will continue to shed light on the neural underpinnings of natural
behaviours.

References

Afshar, A., Santhanam, G., Byron, M. Y., Ryu, S. I., Sahani, M., and Shenoy, K. V. (2011).
Single-trial neural correlates of arm movement preparation. Neuron, 71(3):555–564.

Agrawal, M., Mattar, M. G., Cohen, J. D., and Daw, N. D. (2022). The temporal dynamics
of opportunity costs: A normative account of cognitive fatigue and boredom. Psychological
Review, 129(3):564.

Aitchison, L., Jegminat, J., Menendez, J. A., Pfister, J.-P., Pouget, A., and Latham, P. E.
(2021). Synaptic plasticity as Bayesian inference. Nature Neuroscience, 24(4):565–571.

Aljundi, R., Babiloni, F., Elhoseiny, M., Rohrbach, M., and Tuytelaars, T. (2018). Memory
aware synapses: Learning what (not) to forget. In Proceedings of the European Conference
on Computer Vision (ECCV), pages 139–154.

Allen, E., Baglama, J., and Boyd, S. (2000). Numerical approximation of the product of the
square root of a matrix with a vector. Linear Algebra and its Applications, 310(1-3):167–181.

Alver, S. and Precup, D. (2021). What is going on inside recurrent meta reinforcement learning
agents? arXiv preprint arXiv:2104.14644.

Amari, S.-I. (1998). Natural gradient works efficiently in learning. Neural Computation,
10(2):251–276.

Ames, K. C. and Churchland, M. M. (2019). Motor cortex signals for each arm are mixed across
hemispheres and neurons yet partitioned within the population response. eLife, 8:e46159.

Antonov, G., Gagne, C., Eldar, E., and Dayan, P. (2022). Optimism and pessimism in optimised
replay. PLOS Computational Biology, 18(1):e1009634.

Arvanitidis, G., Hansen, L. K., and Hauberg, S. (2017). Latent space oddity: on the curvature
of deep generative models. arXiv preprint arXiv:1710.11379.

Ashwood, Z. C., Roy, N. A., Stone, I. R., Laboratory, I. B., Urai, A. E., Churchland, A. K.,
Pouget, A., and Pillow, J. W. (2022). Mice alternate between discrete strategies during
perceptual decision-making. Nature Neuroscience, 25(2):201–212.

Azevedo, F. A., Carvalho, L. R., Grinberg, L. T., Farfel, J. M., Ferretti, R. E., Leite, R. E.,
Filho, W. J., Lent, R., and Herculano-Houzel, S. (2009). Equal numbers of neuronal and
nonneuronal cells make the human brain an isometrically scaled-up primate brain. Journal
of Comparative Neurology, 513(5):532–541.

Azouz, R. and Gray, C. M. (1999). Cellular mechanisms contributing to response variability of
cortical neurons in vivo. J. Neurosci., 19(6):2209–2223.

Banino, A., Balaguer, J., and Blundell, C. (2021). Pondernet: Learning to ponder. arXiv
preprint arXiv:2107.05407.

Banino, A., Barry, C., Uria, B., Blundell, C., Lillicrap, T., Mirowski, P., Pritzel, A., Chadwick,
M. J., Degris, T., Modayil, J., Wayne, G., Soyer, H., Viola, F., Zhang, B., Goroshin, R.,
Rabinowitz, N., Pascanu, R., Beattie, C., Petersen, S., Sadik, A., Gaffney, S., King, H.,

98 References

Kavukcuoglu, K., Hassabis, D., Hadsell, R., and Kumaran, D. (2018). Vector-based navigation
using grid-like representations in artificial agents. Nature, 557(7705):429–433.

Bansal, A., Schwarzschild, A., Borgnia, E., Emam, Z., Huang, F., Goldblum, M., and Goldstein,
T. (2022). End-to-end algorithm synthesis with recurrent networks: Logical extrapolation
without overthinking. arXiv preprint arXiv:2202.05826.

Beck, J. M., Ma, W. J., Kiani, R., Hanks, T., Churchland, A. K., Roitman, J., Shadlen, M. N.,
Latham, P. E., and Pouget, A. (2008). Probabilistic population codes for Bayesian decision
making. Neuron, 60(6):1142–1152.

Berkes, P., Orbán, G., Lengyel, M., and Fiser, J. (2011). Spontaneous cortical activity reveals
hallmarks of an optimal internal model of the environment. Science, 331(6013):83–87.

Bernacchia, A., Lengyel, M., and Hennequin, G. (2018). Exact natural gradient in deep linear
networks and its application to the nonlinear case. In Advances in Neural Information
Processing Systems, volume 31.

Bishop, C. M. (1999). Bayesian PCA. In Advances in Neural Information Processing Systems.

Bjerke, M., Schott, L., Jensen, K. T., Battistin, C., Klindt, D. A., and Dunn, B. A. (2022).
Understanding neural coding on latent manifolds by sharing features and dividing ensembles.
arXiv preprint arXiv:2210.03155.

Bolkan, S. S., Stone, I. R., Pinto, L., Ashwood, Z. C., Iravedra Garcia, J. M., Herman, A. L.,
Singh, P., Bandi, A., Cox, J., Zimmerman, C. A., et al. (2022). Opponent control of behavior
by dorsomedial striatal pathways depends on task demands and internal state. Nature
Neuroscience, 25(3):345–357.

Borovitskiy, V., Terenin, A., Mostowsky, P., and Deisenroth, M. P. (2020). Matérn Gaussian
processes on Riemannian manifolds. arXiv preprint arXiv:2006.10160.

Botvinick, M. and Toussaint, M. (2012). Planning as inference. Trends in cognitive sciences,
16(10):485–488.

Botvinick, M., Wang, J. X., Dabney, W., Miller, K. J., and Kurth-Nelson, Z. (2020). Deep
reinforcement learning and its neuroscientific implications. Neuron, 107(4):603–616.

Botvinick, M. M. and Cohen, J. D. (2014). The computational and neural basis of cognitive
control: charted territory and new frontiers. Cognitive science, 38(6):1249–1285.

Bui, T. D., Yan, J., and Turner, R. E. (2017). A unifying framework for Gaussian process
pseudo-point approximations using power expectation propagation. The Journal of Machine
Learning Research, 18(1):3649–3720.

Burda, Y., Grosse, R., and Salakhutdinov, R. (2015). Importance weighted autoencoders. arXiv
preprint arXiv:1509.00519.

Callaway, F., van Opheusden, B., Gul, S., Das, P., Krueger, P. M., Griffiths, T. L., and Lieder,
F. (2022). Rational use of cognitive resources in human planning. Nature Human Behaviour,
6(8):1112–1125.

Carmena, J. M., Lebedev, M. A., Henriquez, C. S., and Nicolelis, M. A. (2005). Stable ensemble
performance with single-neuron variability during reaching movements in primates. Journal
of Neuroscience, 25(46):10712–10716.

References 99

Carr, M. F., Jadhav, S. P., and Frank, L. M. (2011). Hippocampal replay in the awake
state: a potential substrate for memory consolidation and retrieval. Nature Neuroscience,
14(2):147–153.

Challis, E. and Barber, D. (2013). Gaussian Kullback-Leibler approximate inference. Journal
of Machine Learning Research, 14(8).

Chang, P. E., Wilkinson, W. J., Khan, M. E., and Solin, A. (2020). Fast variational learning in
state-space Gaussian process models. In 2020 IEEE 30th International Workshop on Machine
Learning for Signal Processing (MLSP), pages 1–6. IEEE.

Chaudhry, A., Dokania, P. K., Ajanthan, T., and Torr, P. H. (2018). Riemannian walk
for incremental learning: Understanding forgetting and intransigence. arXiv preprint
arXiv:1801.10112.

Chaudhuri, R., Gercek, B., Pandey, B., Peyrache, A., and Fiete, I. (2019). The intrinsic
attractor manifold and population dynamics of a canonical cognitive circuit across waking
and sleep. Nature Neuroscience, 22(9):1512–1520.

Chestek, C. A., Batista, A. P., Santhanam, G., Byron, M. Y., Afshar, A., Cunningham,
J. P., Gilja, V., Ryu, S. I., Churchland, M. M., and Shenoy, K. V. (2007). Single-neuron
stability during repeated reaching in macaque premotor cortex. Journal of Neuroscience,
27(40):10742–10750.

Cho, K., Van Merriënboer, B., Bahdanau, D., and Bengio, Y. (2014). On the properties of
neural machine translation: Encoder-decoder approaches. arXiv preprint arXiv:1409.1259.

Churchland, M. M., Cunningham, J. P., Kaufman, M. T., Foster, J. D., Nuyujukian, P., Ryu,
S. I., and Shenoy, K. V. (2012). Neural population dynamics during reaching. Nature,
487(7405):51–56.

Churchland, M. M. and Shenoy, K. V. (2007). Temporal complexity and heterogeneity of single-
neuron activity in premotor and motor cortex. Journal of neurophysiology, 97:4235–4257.

Clopath, C., Bonhoeffer, T., Hübener, M., and Rose, T. (2017). Variance and invariance
of neuronal long-term representations. Philosophical Transactions of the Royal Society B:
Biological Sciences, 372(1715):20160161.

Cong, Y., Zhao, M., Li, J., Wang, S., and Carin, L. (2020). GAN memory with no forgetting.
In Advances in Neural Information Processing Systems, volume 33.

Constantinescu, A. O., O’Reilly, J. X., and Behrens, T. E. (2016). Organizing conceptual
knowledge in humans with a gridlike code. Science, 352:1464–1468.

Cunningham, J. P. and Byron, M. Y. (2014). Dimensionality reduction for large-scale neural
recordings. Nature Neuroscience, 17(11):1500–1509.

Cunningham, J. P. and Ghahramani, Z. (2015). Linear dimensionality reduction: Survey,
insights, and generalizations. The Journal of Machine Learning Research, 16:2859–2900.

Dabney, W., Kurth-Nelson, Z., Uchida, N., Starkweather, C. K., Hassabis, D., Munos, R.,
and Botvinick, M. (2020). A distributional code for value in dopamine-based reinforcement
learning. Nature, 577(7792):671–675.

Damianou, A. and Lawrence, N. D. (2013). Deep Gaussian processes. In Artificial intelligence
and statistics, pages 207–215. PMLR.

100 References

Davidson, T. R., Falorsi, L., De Cao, N., Kipf, T., and Tomczak, J. M. (2018). Hyperspherical
variational auto-encoders. 34th Conference on Uncertainty in Artificial Intelligence.

Daw, N. D., Gershman, S. J., Seymour, B., Dayan, P., and Dolan, R. J. (2011). Model-based
influences on humans’ choices and striatal prediction errors. Neuron, 69(6):1204–1215.

Daw, N. D., Niv, Y., and Dayan, P. (2005). Uncertainty-based competition between prefrontal
and dorsolateral striatal systems for behavioral control. Nature Neuroscience, 8(12):1704–
1711.

Dayan, P., Hinton, G. E., Neal, R. M., and Zemel, R. S. (1995). The Helmholtz machine.
Neural computation, 7(5):889–904.

de Jong, E. D. (2016). Incremental sequence learning. arXiv preprint arXiv:1611.03068.

De Lavilléon, G., Lacroix, M. M., Rondi-Reig, L., and Benchenane, K. (2015). Explicit
memory creation during sleep demonstrates a causal role of place cells in navigation. Nature
Neuroscience, 18(4):493–495.

de Saa, J. R. C. and Renart, A. (2022). Control limited perceptual decision making. bioRxiv.

Deng, J., Dong, W., Socher, R., Li, L.-J., Li, K., and Fei-Fei, L. (2009). Imagenet: A large-scale
hierarchical image database. In 2009 IEEE conference on computer vision and pattern
recognition, pages 248–255. Ieee.

Dhawale, A. K., Poddar, R., Wolff, S. B., Normand, V. A., Kopelowitz, E., and Ölveczky, B. P.
(2017). Automated long-term recording and analysis of neural activity in behaving animals.
eLife, 6:e27702.

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani,
M., Minderer, M., Heigold, G., Gelly, S., et al. (2020). An image is worth 16x16 words:
Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929.

Doya, K., Ishii, S., Pouget, A., and Rao, R. P. (2007). Bayesian brain: Probabilistic approaches
to neural coding. MIT press.

Driscoll, L. N., Pettit, N. L., Minderer, M., Chettih, S. N., and Harvey, C. D. (2017). Dynamic
reorganization of neuronal activity patterns in parietal cortex. Cell, 170(5):986–999.

Drugowitsch, J., DeAngelis, G. C., Klier, E. M., Angelaki, D. E., and Pouget, A. (2014).
Optimal multisensory decision-making in a reaction-time task. Elife, 3.

Duan, Y., Schulman, J., Chen, X., Bartlett, P. L., Sutskever, I., and Abbeel, P. (2016). RL2:
Fast reinforcement learning via slow reinforcement learning. arXiv preprint arXiv:1611.02779.

Duncker, L., Driscoll, L., Shenoy, K. V., Sahani, M., and Sussillo, D. (2020). Organizing
recurrent network dynamics by task-computation to enable continual learning. In Advances
in Neural Information Processing Systems, volume 33.

Duncker, L. and Sahani, M. (2018). Temporal alignment and latent Gaussian process factor
inference in population spike trains. In Advances in Neural Information Processing Systems,
volume 31.

Dunn, T. W., Marshall, J. D., Severson, K. S., Aldarondo, D. E., Hildebrand, D. G., Chettih,
S. N., Wang, W. L., Gellis, A. J., Carlson, D. E., Aronov, D., et al. (2021). Geometric deep
learning enables 3d kinematic profiling across species and environments. Nature methods,
18(5):564–573.

References 101

Echeveste, R., Aitchison, L., Hennequin, G., and Lengyel, M. (2020). Cortical-like dynamics in
recurrent circuits optimized for sampling-based probabilistic inference. Nature Neuroscience,
23(9):1138–1149.

Ecker, A. S., Berens, P., Cotton, R. J., Subramaniyan, M., Denfield, G. H., Cadwell, C. R.,
Smirnakis, S. M., Bethge, M., and Tolias, A. S. (2014). State dependence of noise correlations
in macaque primary visual cortex. Neuron, 82(1):235–248.

Ehret, B., Henning, C., Cervera, M. R., Meulemans, A., von Oswald, J., and Grewe, B. F.
(2020). Continual learning in recurrent neural networks with hypernetworks. arXiv preprint
arXiv:2006.12109.

Elgammal, A. and Lee, C.-S. (2008). Tracking people on a torus. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 31(3):520–538.

Elsayed, G. F., Lara, A. H., Kaufman, M. T., Churchland, M. M., and Cunningham, J. P.
(2016). Reorganization between preparatory and movement population responses in motor
cortex. Nat. Commun., 7:1–15.

Ernst, M. O. and Banks, M. S. (2002). Humans integrate visual and haptic information in a
statistically optimal fashion. Nature, 415(6870):429–433.

Failor, S. W., Carandini, M., and Harris, K. D. (2021). Learning orthogonalizes visual cortical
population codes. bioRxiv.

Falorsi, L., de Haan, P., Davidson, T. R., and Forré, P. (2019). Reparameterizing distributions
on Lie groups. arXiv preprint arXiv:1903.02958.

Falorsi, L. and Forré, P. (2020). Neural ordinary differential equations on manifolds. arXiv
preprint arXiv:2006.06663.

Fenton, A. A. and Muller, R. U. (1998). Place cell discharge is extremely variable during
individual passes of the rat through the firing field. Proceedings of the National Academy of
Sciences, 95(6):3182–3187.

Feragen, A., Lauze, F., and Hauberg, S. (2015). Geodesic exponential kernels: When curvature
and linearity conflict. In Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pages 3032–3042.

Finkelstein, A., Derdikman, D., Rubin, A., Foerster, J. N., Las, L., and Ulanovsky, N. (2015).
Three-dimensional head-direction coding in the bat brain. Nature, 517(7533):159–164.

Fiser, J., Berkes, P., Orbán, G., and Lengyel, M. (2010). Statistically optimal perception and
learning: from behavior to neural representations. Trends in Cognitive Sciences, 14(3):119–
130.

Flint, R. D., Scheid, M. R., Wright, Z. A., Solla, S. A., and Slutzky, M. W. (2016). Long-term
stability of motor cortical activity: implications for brain machine interfaces and optimal
feedback control. Journal of neuroscience, 36(12):3623–3632.

Fortuin, V., Garriga-Alonso, A., Ober, S. W., Wenzel, F., Rätsch, G., Turner, R. E., van der
Wilk, M., and Aitchison, L. (2021). Bayesian neural network priors revisited. arXiv preprint
arXiv:2102.06571.

Foster, D. J. (2017). Replay comes of age. Annu. Rev. Neurosci, 40(581-602):9.

102 References

Fu, M., Yu, X., Lu, J., and Zuo, Y. (2012). Repetitive motor learning induces coordinated
formation of clustered dendritic spines in vivo. Nature, 483(7387):92–95.

Gallego, J. A., Perich, M. G., Chowdhury, R. H., Solla, S. A., and Miller, L. E. (2020). Long-term
stability of cortical population dynamics underlying consistent behavior. Nature Neuroscience,
23(2):260–270.

Gallego, J. A., Perich, M. G., Miller, L. E., and Solla, S. A. (2017). Neural manifolds for the
control of movement. Neuron, 94(5):978–984.

Ganguly, K. and Carmena, J. M. (2009). Emergence of a stable cortical map for neuroprosthetic
control. PLoS Biology, 7(7):e1000153.

Gao, Y., Archer, E. W., Paninski, L., and Cunningham, J. P. (2016). Linear dynamical
neural population models through nonlinear embeddings. In Advances in Neural Information
Processing Systems, volume 29.

Gardner, R. J., Hermansen, E., Pachitariu, M., Burak, Y., Baas, N. A., Dunn, B. A., Moser,
M.-B., and Moser, E. I. (2022). Toroidal topology of population activity in grid cells. Nature,
602(7895):123–128.

Geerts, J. P., Chersi, F., Stachenfeld, K. L., and Burgess, N. (2020). A general model of
hippocampal and dorsal striatal learning and decision making. Proceedings of the National
Academy of Sciences, 117(49):31427–31437.

Ghahramani, Z. (2015). Probabilistic machine learning and artificial intelligence. Nature,
521(7553):452–459.

Gillespie, A. K., Maya, D. A. A., Denovellis, E. L., Liu, D. F., Kastner, D. B., Coulter, M. E.,
Roumis, D. K., Eden, U. T., and Frank, L. M. (2021). Hippocampal replay reflects specific
past experiences rather than a plan for subsequent choice. Neuron, 109(19):3149–3163.

Glaser, J. I., Benjamin, A. S., Chowdhury, R. H., Perich, M. G., Miller, L. E., and Kording,
K. P. (2020). Machine learning for neural decoding. Eneuro, 7(4).

Gold, J. I. and Shadlen, M. N. (2001). Neural computations that underlie decisions about
sensory stimuli. Trends in cognitive sciences, 5(1):10–16.

Gomperts, S. N., Kloosterman, F., and Wilson, M. A. (2015). VTA neurons coordinate with
the hippocampal reactivation of spatial experience. Elife, 4:e05360.

Graves, A. (2016). Adaptive computation time for recurrent neural networks. arXiv preprint
arXiv:1603.08983.

Griffiths, T. L., Lieder, F., and Goodman, N. D. (2015). Rational use of cognitive resources:
Levels of analysis between the computational and the algorithmic. Topics in cognitive science,
7(2):217–229.

Hafting, T., Fyhn, M., Molden, S., Moser, M.-B., and Moser, E. I. (2005). Microstructure of a
spatial map in the entorhinal cortex. Nature, 436(7052):801–806.

Hamrick, J. B., Ballard, A. J., Pascanu, R., Vinyals, O., Heess, N., and Battaglia, P. W. (2017).
Metacontrol for adaptive imagination-based optimization. arXiv preprint arXiv:1705.02670.

Hardcastle, K., Maheswaranathan, N., Ganguli, S., and Giocomo, L. M. (2017). A multiplexed,
heterogeneous, and adaptive code for navigation in medial entorhinal cortex. Neuron,
94(2):375–387.

References 103

Hastings, W. K. (1970). Monte Carlo sampling methods using Markov chains and their
applications.

Heald, J. B., Lengyel, M., and Wolpert, D. M. (2021). Contextual inference underlies the
learning of sensorimotor repertoires. Nature, 600(7889):489–493.

Hensman, J., Fusi, N., and Lawrence, N. D. (2013). Gaussian processes for big data. arXiv
preprint arXiv:1309.6835.

Hensman, J., Matthews, A., and Ghahramani, Z. (2015a). Scalable variational Gaussian process
classification. In Artificial Intelligence and Statistics, pages 351–360. PMLR.

Hensman, J., Matthews, A. G., Filippone, M., and Ghahramani, Z. (2015b). MCMC for
variationally sparse Gaussian processes. In Advances in Neural Information Processing
Systems, volume 28.

Ho, M. K., Abel, D., Correa, C. G., Littman, M. L., Cohen, J. D., and Griffiths, T. L. (2022).
People construct simplified mental representations to plan. Nature, 606(7912):129–136.

Hochberg, L. R., Bacher, D., Jarosiewicz, B., Masse, N. Y., Simeral, J. D., Vogel, J., Haddadin,
S., Liu, J., Cash, S. S., Van Der Smagt, P., et al. (2012). Reach and grasp by people with
tetraplegia using a neurally controlled robotic arm. Nature, 485(7398):372–375.

Holtmaat, A. and Svoboda, K. (2009). Experience-dependent structural synaptic plasticity in
the mammalian brain. Nature Reviews Neuroscience, 10(9):647–658.

Humphries, M. D. (2020). Strong and weak principles of neural dimension reduction. arXiv
preprint arXiv:2011.08088.

Huszár, F. (2017). On quadratic penalties in elastic weight consolidation. arXiv preprint
arXiv:1712.03847.

Innes, M., Saba, E., Fischer, K., Gandhi, D., Rudilosso, M. C., Joy, N. M., Karmali, T., Pal,
A., and Shah, V. (2018). Fashionable modelling with Flux. arXiv preprint arXiv:1811.01457.

Jacob, P.-Y., Casali, G., Spieser, L., Page, H., Overington, D., and Jeffery, K. (2017). An
independent, landmark-dominated head-direction signal in dysgranular retrosplenial cortex.
Nature Neuroscience, 20(2):173–175.

Jaderberg, M., Mnih, V., Czarnecki, W. M., Schaul, T., Leibo, J. Z., Silver, D., and Kavukcuoglu,
K. (2016). Reinforcement learning with unsupervised auxiliary tasks. arXiv preprint
arXiv:1611.05397.

Jadhav, S. P., Rothschild, G., Roumis, D. K., and Frank, L. M. (2016). Coordinated excitation
and inhibition of prefrontal ensembles during awake hippocampal sharp-wave ripple events.
Neuron, 90(1):113–127.

Jakob, W. (2012). Numerically stable sampling of the von Mises-Fisher distribution on S2 (and
other tricks).

Jayasumana, S., Hartley, R., Salzmann, M., Li, H., and Harandi, M. (2015). Kernel methods
on Riemannian manifolds with Gaussian RBF kernels. IEEE transactions on pattern analysis
and machine intelligence, 37(12):2464–2477.

Jensen, K. T., Hennequin, G., and Mattar, M. G. (2023). A recurrent network model of planning
explains hippocampal replay and human behavior. bioRxiv.

104 References

Jensen, K. T., Kadmon Harpaz, N., Dhawale, A. K., Wolff, S. B., and Ölveczky, B. P. (2022a).
Long-term stability of single neuron activity in the motor system. Nature Neuroscience,
25:1–11.

Jensen, K. T., Kao, T.-C., Stone, J., and Hennequin, G. (2021). Scalable Bayesian GPFA
with automatic relevance determination and discrete noise models. In Advances in Neural
Information Processing Systems, volume 34.

Jensen, K. T., Kao, T.-C., Tripodi, M., and Hennequin, G. (2020). Manifold GPLVMs for
discovering non-Euclidean latent structure in neural data. In Advances in Neural Information
Processing Systems, volume 33.

Jensen, K. T., Liu, D., Kao, T.-C., Lengyel, M., and Hennequin, G. (2022b). Beyond the
Euclidean brain: inferring non-Euclidean latent trajectories from spike trains. bioRxiv.

Jiang, W.-C., Xu, S., and Dudman, J. T. (2022). Hippocampal representations of foraging
trajectories depend upon spatial context. Nature Neuroscience, 25(12):1693–1705.

Jie, T. and Abbeel, P. (2010). On a connection between importance sampling and the likelihood
ratio policy gradient. In Advances in Neural Information Processing Systems, volume 23.

Johnson, A. and Redish, A. D. (2007). Neural ensembles in CA3 transiently encode paths
forward of the animal at a decision point. Journal of Neuroscience, 27(45):12176–12189.

Jordan, M. I. and Rumelhart, D. E. (1992). Forward models: Supervised learning with a distal
teacher. Cognitive science, 16(3):307–354.

Jumper, J., Evans, R., Pritzel, A., Green, T., Figurnov, M., Ronneberger, O., Tunyasuvunakool,
K., Bates, R., Žídek, A., Potapenko, A., et al. (2021). Highly accurate protein structure
prediction with AlphaFold. Nature, 596(7873):583–589.

Kalman, R. E. (1960). A new approach to linear filtering and prediction problems. Journal of
Basic Engineering.

Kao, T.-C., Jensen, K. T., van de Ven, G., Bernacchia, A., and Hennequin, G. (2021a). Natural
continual learning: success is a journey, not (just) a destination. In Advances in Neural
Information Processing Systems, volume 34.

Kao, T.-C., Sadabadi, M. S., and Hennequin, G. (2021b). Optimal anticipatory control as a
theory of motor preparation: A thalamo-cortical circuit model. Neuron, 109(9):1567–1581.

Kaplan, J., McCandlish, S., Henighan, T., Brown, T. B., Chess, B., Child, R., Gray, S., Radford,
A., Wu, J., and Amodei, D. (2020). Scaling laws for neural language models. arXiv preprint
arXiv:2001.08361.

Katlowitz, K. A., Picardo, M. A., and Long, M. A. (2018). Stable sequential activity underlying
the maintenance of a precisely executed skilled behavior. Neuron, 98(6):1133–1140.

Kaufman, M. T., Churchland, M. M., Ryu, S. I., and Shenoy, K. V. (2014). Cortical activity in
the null space: permitting preparation without movement. Nature Neuroscience, 17(3):440–
448.

Kawai, R., Markman, T., Poddar, R., Ko, R., Fantana, A. L., Dhawale, A. K., Kampff, A. R.,
and Ölveczky, B. P. (2015). Motor cortex is required for learning but not for executing a
motor skill. Neuron, 86(3):800–812.

References 105

Keeley, S., Aoi, M., Yu, Y., Smith, S., and Pillow, J. W. (2020a). Identifying signal and noise
structure in neural population activity with Gaussian process factor models. In Advances in
neural information processing systems, volume 33.

Keeley, S., Zoltowski, D., Yu, Y., Smith, S., and Pillow, J. (2020b). Efficient non-conjugate
Gaussian process factor models for spike count data using polynomial approximations. In
International Conference on Machine Learning, pages 5177–5186. PMLR.

Keeley, S. L., Zoltowski, D. M., Aoi, M. C., and Pillow, J. W. (2020c). Modeling statistical
dependencies in multi-region spike train data. Current Opinion in Neurobiology, 65:194–202.

Keshtkaran, M. R. and Pandarinath, C. (2019). Enabling hyperparameter optimization in
sequential autoencoders for spiking neural data. arXiv preprint arXiv:1908.07896.

Keshtkaran, M. R., Sedler, A. R., Chowdhury, R. H., Tandon, R., Basrai, D., Nguyen, S. L.,
Sohn, H., Jazayeri, M., Miller, L. E., and Pandarinath, C. (2021). A large-scale neural
network training framework for generalized estimation of single-trial population dynamics.
bioRxiv.

Kingma, D. P. and Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980.

Kingma, D. P. and Welling, M. (2013). Auto-encoding variational bayes. arXiv preprint
arXiv:1312.6114.

Kirkpatrick, J., Pascanu, R., Rabinowitz, N., Veness, J., Desjardins, G., Rusu, A. A., Milan,
K., Quan, J., Ramalho, T., Grabska-Barwinska, A., et al. (2017). Overcoming catastrophic
forgetting in neural networks. Proceedings of the National Academy of Sciences, 114(13):3521–
3526.

Knill, D. C. and Richards, W. (1996). Perception as Bayesian inference. Cambridge University
Press.

Körding, K. P., Beierholm, U., Ma, W. J., Quartz, S., Tenenbaum, J. B., and Shams, L. (2007).
Causal inference in multisensory perception. PLoS one, 2(9):e943.

Körding, K. P. and Wolpert, D. M. (2004). Bayesian integration in sensorimotor learning.
Nature, 427(6971):244–247.

Körding, K. P. and Wolpert, D. M. (2006). Bayesian decision theory in sensorimotor control.
Trends in cognitive sciences, 10(7):319–326.

Krakauer, J. W. and Shadmehr, R. (2006). Consolidation of motor memory. Trends in
neurosciences, 29(1):58–64.

Krause, E. L. and Drugowitsch, J. (2022). A large majority of awake hippocampal sharp-wave
ripples feature spatial trajectories with momentum. Neuron, 110(4):722–733.

Kunstner, F., Balles, L., and Hennig, P. (2019). Limitations of the empirical Fisher approxima-
tion for natural gradient descent. arXiv preprint arXiv:1905.12558.

Kurth-Nelson, Z., Economides, M., Dolan, R. J., and Dayan, P. (2016). Fast sequences of
non-spatial state representations in humans. Neuron, 91(1):194–204.

Lai, L. and Gershman, S. J. (2021). Policy compression: An information bottleneck in action
selection. In Psychology of Learning and Motivation, volume 74, pages 195–232. Elsevier.

106 References

Lakshmanan, K. C., Sadtler, P. T., Tyler-Kabara, E. C., Batista, A. P., and Yu, B. M. (2015).
Extracting low-dimensional latent structure from time series in the presence of delays. Neural
computation, 27(9):1825–1856.

Lara, A. H., Elsayed, G. F., Zimnik, A. J., Cunningham, J. P., and Churchland, M. M.
(2018). Conservation of preparatory neural events in monkey motor cortex regardless of how
movement is initiated. eLife, 7:e31826.

Lawrence, N. (2005). Probabilistic non-linear principal component analysis with Gaussian
process latent variable models. Journal of machine learning research, 6:1783–1816.

Lawrence, N. D. (2004). Gaussian process latent variable models for visualisation of high
dimensional data. In Advances in neural information processing systems.

LeCun, Y., Bengio, Y., and Hinton, G. (2015). Deep learning. Nature, 521(7553):436–444.

Levine, S. (2018). Reinforcement learning and control as probabilistic inference: Tutorial and
review. arXiv preprint arXiv:1805.00909.

Li, Z. and Hoiem, D. (2017). Learning without forgetting. IEEE Transactions on Pattern
Analysis and Machine Intelligence, 40(12):2935–2947.

Liu, D. and Lengyel, M. (2021). A universal probabilistic spike count model reveals ongoing
modulation of neural variability. In Advances in Neural Information Processing Systems,
volume 34.

Liu, Y., Dolan, R. J., Kurth-Nelson, Z., and Behrens, T. E. (2019). Human replay spontaneously
reorganizes experience. Cell, 178(3):640–652.

Liu, Y., Mattar, M. G., Behrens, T. E., Daw, N. D., and Dolan, R. J. (2021). Experience replay
is associated with efficient nonlocal learning. Science, 372(6544):eabf1357.

Loo, N., Swaroop, S., and Turner, R. E. (2020). Generalized variational continual learning.
arXiv preprint arXiv:2011.12328.

Lou, A., Lim, D., Katsman, I., Huang, L., Jiang, Q., Lim, S.-N., and De Sa, C. (2020). Neural
manifold ordinary differential equations. arXiv preprint arXiv:2006.10254.

Low, R. J., Lewallen, S., Aronov, D., Nevers, R., and Tank, D. W. (2018). Probing variability
in a cognitive map using manifold inference from neural dynamics. bioRxiv.

Lütcke, H., Margolis, D. J., and Helmchen, F. (2013). Steady or changing? long-term monitoring
of neuronal population activity. Trends in Neurosciences, 36(7):375–384.

Ma, W. J., Beck, J. M., Latham, P. E., and Pouget, A. (2006). Bayesian inference with
probabilistic population codes. Nature Neuroscience, 9(11):1432–1438.

Maaten, L. v. d. and Hinton, G. (2008). Visualizing data using t-SNE. Journal of machine
learning research, 9:2579–2605.

MacKay, D. J. (1992). A practical Bayesian framework for backpropagation networks. Neural
computation, 4(3):448–472.

MacKay, D. J. (1998). Introduction to Gaussian processes. NATO ASI series. Series F:
computer and system sciences, pages 133–165.

References 107

MacKay, D. J. (2003). Information theory, inference and learning algorithms. Cambridge
university press.

Macke, J. H., Buesing, L., Cunningham, J. P., Yu, B. M., Shenoy, K. V., and Sahani, M.
(2012). Empirical models of spiking in neural populations. In Advances in Neural Information
Processing Systems.

Makin, J. G., O’Doherty, J. E., Cardoso, M. M., and Sabes, P. N. (2018). Superior arm-
movement decoding from cortex with a new, unsupervised-learning algorithm. Journal of
neural engineering, 15(2):026010.

Mallasto, A. and Feragen, A. (2018). Wrapped Gaussian process regression on Riemannian man-
ifolds. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pages 5580–5588.

Mallasto, A., Hauberg, S., and Feragen, A. (2019). Probabilistic Riemannian submanifold
learning with wrapped Gaussian process latent variable models. In The 22nd International
Conference on Artificial Intelligence and Statistics, pages 2368–2377. PMLR.

Mante, V., Sussillo, D., Shenoy, K. V., and Newsome, W. T. (2013). Context-dependent
computation by recurrent dynamics in prefrontal cortex. Nature, 503(7474):78–84.

Martens, J. (2014). New insights and perspectives on the natural gradient method. arXiv
preprint arXiv:1412.1193.

Martens, J., Ba, J., and Johnson, M. (2018). Kronecker-factored curvature approximations for
recurrent neural networks. In International Conference on Learning Representations.

Martens, J. and Grosse, R. (2015). Optimizing neural networks with Kronecker-factored
approximate curvature. In ICML, pages 2408–2417.

Masullo, L., Mariotti, L., Alexandre, N., Freire-Pritchett, P., Boulanger, J., and Tripodi, M.
(2019). Genetically defined functional modules for spatial orienting in the mouse superior
colliculus. Current Biology, 29:2892–2904.

Mathieu, E. and Nickel, M. (2020). Riemannian continuous normalizing flows. arXiv preprint
arXiv:2006.10605.

Mathis, A., Mamidanna, P., Cury, K. M., Abe, T., Murthy, V. N., Mathis, M. W., and Bethge,
M. (2018). Deeplabcut: markerless pose estimation of user-defined body parts with deep
learning. Nature Neuroscience, 21(9):1281–1289.

Mattar, M. G. and Daw, N. D. (2018). Prioritized memory access explains planning and
hippocampal replay. Nature Neuroscience, 21(11):1609–1617.

Mattar, M. G. and Lengyel, M. (2022). Planning in the brain. Neuron, 110(6):914–934.

McNamee, D. C., Stachenfeld, K. L., Botvinick, M. M., and Gershman, S. J. (2021). Flex-
ible modulation of sequence generation in the entorhinal–hippocampal system. Nature
Neuroscience, 24(6):851–862.

Melnick, M. J. (1971). Effects of overlearning on the retention of a gross motor skill. Research
Quarterly. American Association for Health, Physical Education and Recreation, 42(1):60–69.

Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., and Teller, E. (1953).
Equation of state calculations by fast computing machines. The journal of chemical physics,
21(6):1087–1092.

108 References

Minxha, J., Adolphs, R., Fusi, S., Mamelak, A. N., and Rutishauser, U. (2020). Flexible
recruitment of memory-based choice representations by the human medial frontal cortex.
Science, 368(6498).

Morris, R. G. (1981). Spatial localization does not require the presence of local cues. Learning
and motivation, 12(2):239–260.

Murray, I. and Adams, R. P. (2010). Slice sampling covariance hyperparameters of latent
Gaussian models. arXiv preprint arXiv:1006.0868.

Naesseth, C. A., Ruiz, F. J., Linderman, S. W., and Blei, D. M. (2016). Reparameterization
gradients through acceptance-rejection sampling algorithms. arXiv preprint arXiv:1610.05683.

Navarro, A. K., Frellsen, J., and Turner, R. E. (2017). The multivariate generalised von Mises
distribution: inference and applications. In Thirty-First AAAI Conference on Artificial
Intelligence.

Neal, R. M. (2012). Bayesian learning for neural networks, volume 118. Springer Science &
Business Media.

Nguyen, C. V., Li, Y., Bui, T. D., and Turner, R. E. (2017). Variational continual learning.
arXiv preprint arXiv:1710.10628.

Nieh, E. H., Schottdorf, M., Freeman, N. W., Low, R. J., Lewallen, S., Koay, S. A., Pinto,
L., Gauthier, J. L., Brody, C. D., and Tank, D. W. (2021). Geometry of abstract learned
knowledge in the hippocampus. Nature, 595(7865):80–84.

Niv, Y. (2009). Reinforcement learning in the brain. Journal of Mathematical Psychology,
53(3):139–154.

Ólafsdóttir, H. F., Carpenter, F., and Barry, C. (2017). Task demands predict a dynamic switch
in the content of awake hippocampal replay. Neuron, 96(4):925–935.

Opper, M. and Archambeau, C. (2009). The variational Gaussian approximation revisited.
Neural Computation, 21(3):786–792.

Orbán, G., Berkes, P., Fiser, J., and Lengyel, M. (2016). Neural variability and sampling-based
probabilistic representations in the visual cortex. Neuron, 92(2):530–543.

Orbán, G., Fiser, J., Aslin, R. N., and Lengyel, M. (2008). Bayesian learning of visual chunks
by human observers. Proceedings of the National Academy of Sciences, 105(7):2745–2750.

Osawa, K., Swaroop, S., Jain, A., Eschenhagen, R., Turner, R. E., Yokota, R., and Khan, M. E.
(2019). Practical deep learning with Bayesian principles. arXiv preprint arXiv:1906.02506.

Ouyang, L., Wu, J., Jiang, X., Almeida, D., Wainwright, C. L., Mishkin, P., Zhang, C., Agarwal,
S., Slama, K., Ray, A., et al. (2022). Training language models to follow instructions with
human feedback. arXiv preprint arXiv:2203.02155.

O’Doherty, J. E., Cardoso, M., Makin, J., and Sabes, P. (2017). Nonhuman primate reaching with
multichannel sensorimotor cortex electrophysiology. Zenodo http://doi. org/10.5281/zenodo,
583331.

Pachitariu, M., Stringer, C., Dipoppa, M., Schröder, S., Rossi, L. F., Dalgleish, H., Carandini,
M., and Harris, K. D. (2017). Suite2p: beyond 10,000 neurons with standard two-photon
microscopy. bioRxiv.

References 109

Pan, P., Swaroop, S., Immer, A., Eschenhagen, R., Turner, R. E., and Khan, M. E. (2020).
Continual deep learning by functional regularisation of memorable past. arXiv preprint
arXiv:2004.14070.

Pandarinath, C., O’Shea, D. J., Collins, J., Jozefowicz, R., Stavisky, S. D., Kao, J. C.,
Trautmann, E. M., Kaufman, M. T., Ryu, S. I., Hochberg, L. R., et al. (2018). Inferring
single-trial neural population dynamics using sequential auto-encoders. Nature methods,
15(10):805–815.

Pascanu, R., Li, Y., Vinyals, O., Heess, N., Buesing, L., Racanière, S., Reichert, D., Weber, T.,
Wierstra, D., and Battaglia, P. (2017). Learning model-based planning from scratch. arXiv
preprint arXiv:1707.06170.

Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O., Blondel, M.,
Prettenhofer, P., Weiss, R., Dubourg, V., et al. (2011). Scikit-learn: Machine learning in
python. the Journal of machine Learning research, 12:2825–2830.

Peshkin, L. and Shelton, C. R. (2002). Learning from scarce experience. arXiv preprint
cs/0204043.

Peters, A. J., Chen, S. X., and Komiyama, T. (2014). Emergence of reproducible spatiotemporal
activity during motor learning. Nature, 510(7504):263–267.

Peyrache, A. and Buzsáki, G. (2015). Extracellular recordings from multi-site silicon probes in
the anterior thalamus and subicular formation of freely moving mice. CRCNS.org. Dataset.
https://doi.org/10.6080/K0G15XS1.

Peyrache, A., Lacroix, M. M., Petersen, P. C., and Buzsáki, G. (2015). Internally organized
mechanisms of the head direction sense. Nature Neuroscience, 18(4):569–575.

Pfeiffer, B. E. and Foster, D. J. (2013). Hippocampal place-cell sequences depict future paths
to remembered goals. Nature, 497(7447):74–79.

Pillow, J. W., Shlens, J., Paninski, L., Sher, A., Litke, A. M., Chichilnisky, E., and Simoncelli,
E. P. (2008). Spatio-temporal correlations and visual signalling in a complete neuronal
population. Nature, 454(7207):995–999.

Piray, P. and Daw, N. D. (2021). Linear reinforcement learning in planning, grid fields, and
cognitive control. Nature communications, 12(1):1–20.

Qin, Y.-L., McNaughton, B. L., Skaggs, W. E., and Barnes, C. A. (1997). Memory reprocessing
in corticocortical and hippocampocortical neuronal ensembles. Philosophical Transactions of
the Royal Society of London. Series B: Biological Sciences, 352(1360):1525–1533.

Quinonero-Candela, J. and Rasmussen, C. E. (2005). A unifying view of sparse approximate
Gaussian process regression. The Journal of Machine Learning Research, 6:1939–1959.

Rae, J. W., Borgeaud, S., Cai, T., Millican, K., Hoffmann, J., Song, F., Aslanides, J., Henderson,
S., Ring, R., Young, S., et al. (2021). Scaling language models: Methods, analysis & insights
from training Gopher. arXiv preprint arXiv:2112.11446.

Rao, R. P. (2004). Bayesian computation in recurrent neural circuits. Neural computation,
16(1):1–38.

Rasmussen, C. E. and Williams, C. K. (2006). Gaussian processes for machine learning,
volume 2. MIT press Cambridge, MA.

110 References

Recanatesi, S., Ocker, G. K., Buice, M. A., and Shea-Brown, E. (2019). Dimensionality in
recurrent spiking networks: global trends in activity and local origins in connectivity. PLoS
computational biology, 15(7):e1006446.

Rey, L. A. P., Menkovski, V., and Portegies, J. W. (2019). Diffusion variational autoencoders.
arXiv preprint arXiv:1901.08991.

Rezende, D. J., Mohamed, S., and Wierstra, D. (2014). Stochastic backpropagation and
approximate inference in deep generative models. In International conference on machine
learning, pages 1278–1286. PMLR.

Rezende, D. J., Papamakarios, G., Racanière, S., Albergo, M. S., Kanwar, G., Shanahan,
P. E., and Cranmer, K. (2020). Normalizing flows on tori and spheres. arXiv preprint
arXiv:2022.02428.

Ritter, H., Botev, A., and Barber, D. (2018). Online structured Laplace approximations for
overcoming catastrophic forgetting. arXiv preprint arXiv:1805.07810.

Rokni, U., Richardson, A. G., Bizzi, E., and Seung, H. S. (2007). Motor learning with unstable
neural representations. Neuron, 54(4):653–666.

Roweis, S. and Ghahramani, Z. (1999). A unifying review of linear Gaussian models. Neural
computation, 11(2):305–345.

Rubin, A., Sheintuch, L., Brande-Eilat, N., Pinchasof, O., Rechavi, Y., Geva, N., and Ziv, Y.
(2019). Revealing neural correlates of behavior without behavioral measurements. Nature
communications, 10:1–14.

Rule, M. E., Loback, A. R., Raman, D. V., Driscoll, L. N., Harvey, C. D., and O’Leary, T.
(2020). Stable task information from an unstable neural population. Elife, 9:e51121.

Rule, M. E., O’Leary, T., and Harvey, C. D. (2019). Causes and consequences of representational
drift. Current Opinion in Neurobiology, 58:141–147.

Russek, E., Acosta-Kane, D., van Opheusden, B., Mattar, M. G., and Griffiths, T. (2022). Time
spent thinking in online chess reflects the value of computation. PsyArXiv.

Rutten, V., Bernacchia, A., Sahani, M., and Hennequin, G. (2020). Non-reversible Gaussian
processes for identifying latent dynamical structure in neural data. In Advances in Neural
Information Processing Systems, volume 33.

Saha, G., Garg, I., and Roy, K. (2021). Gradient projection memory for continual learning.
arXiv preprint arXiv:2103.09762.

Samborska, V., Butler, J. L., Walton, M. E., Behrens, T. E., and Akam, T. (2022). Com-
plementary task representations in hippocampus and prefrontal cortex for generalizing the
structure of problems. Nature Neuroscience, 25(10):1314–1326.

Santhanam, G., Ryu, S. I., Yu, B. M., Afshar, A., and Shenoy, K. V. (2006). A high-performance
brain–computer interface. Nature, 442(7099):195–198.

Sauerbrei, B. A., Guo, J.-Z., Cohen, J. D., Mischiati, M., Guo, W., Kabra, M., Verma, N.,
Mensh, B., Branson, K., and Hantman, A. W. (2020). Cortical pattern generation during
dexterous movement is input-driven. Nature, 577(7790):386–391.

Saxe, A., Nelli, S., and Summerfield, C. (2021). If deep learning is the answer, what is the
question? Nature Reviews Neuroscience, 22(1):55–67.

References 111

Saxena, S. and Cunningham, J. P. (2019). Towards the neural population doctrine. Current
opinion in neurobiology, 55:103–111.

Schimel, M., Kao, T.-C., Jensen, K. T., and Hennequin, G. (2021). iLQR-VAE: control-
based learning of input-driven dynamics with applications to neural data. In International
Conference on Learning Representations.

Schoonover, C. E., Ohashi, S. N., Axel, R., and Fink, A. J. (2021). Representational drift in
primary olfactory cortex. Nature, 594(7864):541–546.

Schrittwieser, J., Antonoglou, I., Hubert, T., Simonyan, K., Sifre, L., Schmitt, S., Guez, A.,
Lockhart, E., Hassabis, D., Graepel, T., et al. (2020). Mastering atari, go, chess and shogi by
planning with a learned model. Nature, 588(7839):604–609.

Schultz, W., Dayan, P., and Montague, P. R. (1997). A neural substrate of prediction and
reward. Science, 275(5306):1593–1599.

Schwartenbeck, P., Baram, A., Liu, Y., Mark, S., Muller, T., Dolan, R., Botvinick, M., Kurth-
Nelson, Z., and Behrens, T. (2021). Generative replay for compositional visual understanding
in the prefrontal-hippocampal circuit. bioRxiv.

Schwarz, J., Czarnecki, W., Luketina, J., Grabska-Barwinska, A., Teh, Y. W., Pascanu, R.,
and Hadsell, R. (2018). Progress & compress: A scalable framework for continual learning.
In International Conference on Machine Learning, pages 4528–4537. PMLR.

Seelig, J. D. and Jayaraman, V. (2015). Neural dynamics for landmark orientation and angular
path integration. Nature, 521(7551):186–191.

Shepard, R. N. and Metzler, J. (1971). Mental rotation of three-dimensional objects. Science,
171:701–703.

Shin, H., Lee, J. K., Kim, J., and Kim, J. (2017). Continual learning with deep generative
replay. arXiv preprint arXiv:1705.08690.

Shin, J. D., Tang, W., and Jadhav, S. P. (2019). Dynamics of awake hippocampal-prefrontal
replay for spatial learning and memory-guided decision making. Neuron, 104(6):1110–1125.

Sizemore, M. and Perkel, D. J. (2011). Premotor synaptic plasticity limited to the critical period
for song learning. Proceedings of the National Academy of Sciences, 108(42):17492–17497.

Sohn, H., Narain, D., Meirhaeghe, N., and Jazayeri, M. (2019). Bayesian computation through
cortical latent dynamics. Neuron, 103(5):934–947.

Sola, J., Deray, J., and Atchuthan, D. (2018). A micro Lie theory for state estimation in
robotics. arXiv preprint arXiv:1812.01537.

Solway, A. and Botvinick, M. M. (2012). Goal-directed decision making as probabilistic inference:
a computational framework and potential neural correlates. Psychological review, 119(1):120.

Steinmetz, N. A., Aydin, C., Lebedeva, A., Okun, M., Pachitariu, M., Bauza, M., Beau, M.,
Bhagat, J., Böhm, C., Broux, M., et al. (2021). Neuropixels 2.0: A miniaturized high-density
probe for stable, long-term brain recordings. Science, 372(6539).

Straub, J. (2017). Bayesian inference with the von-Mises-Fisher distribution in 3d.

Stringer, C., Pachitariu, M., Steinmetz, N., Carandini, M., and Harris, K. D. (2019). High-
dimensional geometry of population responses in visual cortex. Nature, 571(7765):361–365.

112 References

Sun, C., Shrivastava, A., Singh, S., and Gupta, A. (2017). Revisiting unreasonable effectiveness
of data in deep learning era. In Proceedings of the IEEE international conference on computer
vision, pages 843–852.

Sussillo, D. and Barak, O. (2013). Opening the black box: low-dimensional dynamics in
high-dimensional recurrent neural networks. Neural computation, 25:626–649.

Sutton, R. S. and Barto, A. G. (2018). Reinforcement learning: An introduction. MIT press.

Teh, Y., Bapst, V., Czarnecki, W. M., Quan, J., Kirkpatrick, J., Hadsell, R., Heess, N., and
Pascanu, R. (2017). Distral: Robust multitask reinforcement learning. In Advances in Neural
Information Processing Systems, volume 30.

Tikhonov, A. N. (1943). On the stability of inverse problems. In Dokl. Akad. Nauk SSSR,
volume 39, pages 195–198.

Titsias, M. (2009). Variational learning of inducing variables in sparse Gaussian processes. In
Artificial intelligence and statistics, pages 567–574. PMLR.

Titsias, M. and Lawrence, N. D. (2010). Bayesian Gaussian process latent variable model. In
Proceedings of the Thirteenth International Conference on Artificial Intelligence and Statistics,
pages 844–851. JMLR Workshop and Conference Proceedings.

Titsias, M. K., Schwarz, J., Matthews, A. G. d. G., Pascanu, R., and Teh, Y. W. (2020).
Functional regularisation for continual learning with Gaussian processes. In International
Conference on Learning Representations.

Tomko, G. J. and Crapper, D. R. (1974). Neuronal variability: non-stationary responses to
identical visual stimuli. Brain research, 79(3):405–418.

Tosi, A., Hauberg, S., Vellido, A., and Lawrence, N. D. (2014). Metrics for probabilistic
geometries. arXiv preprint arXiv:1411.7432.

Tseran, H., Khan, M. E., Harada, T., and Bui, T. D. (2018). Natural variational continual
learning. In Continual Learning Workshop NeurIPS, volume 2.

Turner-Evans, D. B. (2020). Kir.zip. Janelia Research Campus. Dataset.
https://doi.org/10.25378/janelia.12490325.v1.

Turner-Evans, D. B., Jensen, K. T., Ali, S., Paterson, T., Sheridan, A., Ray, R. P., Wolff, T.,
Lauritzen, J. S., Rubin, G. M., Bock, D. D., and Jayaraman, V. (2020). The neuroanatomical
ultrastructure and function of a biological ring attractor. Neuron, 108(1):145–163.

Ulrich, G. (1984). Computer generation of distributions on the M-sphere. Journal of the Royal
Statistical Society: Series C (Applied Statistics), 33(2):158–163.

Urtasun, R., Fleet, D. J., Geiger, A., Popović, J., Darrell, T. J., and Lawrence, N. D. (2008).
Topologically-constrained latent variable models. In Proceedings of the 25th international
conference on Machine learning, pages 1080–1087.

van de Ven, G. M., Siegelmann, H. T., and Tolias, A. S. (2020). Brain-inspired replay for
continual learning with artificial neural networks. Nature Communications, 11(1):1–14.

van de Ven, G. M. and Tolias, A. S. (2018). Generative replay with feedback connections as a
general strategy for continual learning. arXiv preprint arXiv:1809.10635.

References 113

van de Ven, G. M. and Tolias, A. S. (2019). Three scenarios for continual learning. arXiv
preprint arXiv:1904.07734.

van de Ven, G. M., Trouche, S., McNamara, C. G., Allen, K., and Dupret, D. (2016). Hip-
pocampal offline reactivation consolidates recently formed cell assembly patterns during sharp
wave-ripples. Neuron, 92(5):968–974.

van Loan, C. F. and Pitsianis, N. (1993). Approximation with Kronecker products. In Linear
algebra for large scale and real-time applications, pages 293–314. Springer.

van Opheusden, B., Galbiati, G., Kuperwajs, I., Bnaya, Z., Ma, W. J., et al. (2021). Revealing
the impact of expertise on human planning with a two-player board game. PsyArXiv.

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A. N., Kaiser, Ł.,
and Polosukhin, I. (2017). Attention is all you need. In Advances in Neural Information
Processing Systems, volume 30.

Vul, E., Goodman, N., Griffiths, T. L., and Tenenbaum, J. B. (2014). One and done? optimal
decisions from very few samples. Cognitive science, 38(4):599–637.

Wainwright, M. J. and Jordan, M. I. (2008). Graphical models, exponential families, and
variational inference. Now Publishers Inc.

Wang, J. X., Kurth-Nelson, Z., Kumaran, D., Tirumala, D., Soyer, H., Leibo, J. Z., Hassabis,
D., and Botvinick, M. (2018). Prefrontal cortex as a meta-reinforcement learning system.
Nature Neuroscience, 21(6):860–868.

Wang, J. X., Kurth-Nelson, Z., Tirumala, D., Soyer, H., Leibo, J. Z., Munos, R., Blundell, C.,
Kumaran, D., and Botvinick, M. (2016). Learning to reinforcement learn. arXiv preprint
arXiv:1611.05763.

Wang, P. Z. and Wang, W. Y. (2019). Riemannian normalizing flow on variational Wasserstein
autoencoder for text modeling. arXiv preprint arXiv:1904.02399.

Wenzel, F., Roth, K., Veeling, B. S., Świątkowski, J., Tran, L., Mandt, S., Snoek, J., Salimans,
T., Jenatton, R., and Nowozin, S. (2020). How good is the Bayes posterior in deep neural
networks really? arXiv preprint arXiv:2002.02405.

Whittington, J. C., Muller, T. H., Mark, S., Chen, G., Barry, C., Burgess, N., and Behrens,
T. E. (2020). The Tolman-Eichenbaum machine: Unifying space and relational memory
through generalization in the hippocampal formation. Cell, 183(5):1249–1263.

Widloski, J. and Foster, D. J. (2022). Flexible rerouting of hippocampal replay sequences around
changing barriers in the absence of global place field remapping. Neuron, 110(9):1547–1558.

Willett, F. R., Avansino, D. T., Hochberg, L. R., Henderson, J. M., and Shenoy, K. V. (2021).
High-performance brain-to-text communication via handwriting. Nature, 593(7858):249–254.

Williams, C. and Rasmussen, C. (1995). Gaussian processes for regression. In Advances in
Neural Information Processing Systems, volume 8.

Williams, R. J. (1992). Simple statistical gradient-following algorithms for connectionist
reinforcement learning. Machine learning, 8(3):229–256.

Wilson, A. and Nickisch, H. (2015). Kernel interpolation for scalable structured Gaussian
processes (KISS-GP). In International Conference on Machine Learning, pages 1775–1784.
PMLR.

114 References

Wilson, A. G., Dann, C., and Nickisch, H. (2015). Thoughts on massively scalable Gaussian
processes. arXiv preprint arXiv:1511.01870.

Wilson, J. J., Alexandre, N., Trentin, C., and Tripodi, M. (2018). Three-dimensional representa-
tion of motor space in the mouse superior colliculus. Current Biology, 28(11):1744–1755.e12.

Wilson, M. A. and McNaughton, B. L. (1994). Reactivation of hippocampal ensemble memories
during sleep. Science, 265(5172):676–679.

Wu, A., Pashkovski, S., Datta, S. R., and Pillow, J. W. (2018). Learning a latent manifold
of odor representations from neural responses in piriform cortex. In Advances in Neural
Information Processing Systems.

Wu, A., Roy, N. A., Keeley, S., and Pillow, J. W. (2017a). Gaussian process based nonlinear
latent structure discovery in multivariate spike train data. In Advances in Neural Information
Processing Systems, volume 30.

Wu, C.-T., Haggerty, D., Kemere, C., and Ji, D. (2017b). Hippocampal awake replay in fear
memory retrieval. Nature Neuroscience, 20(4):571–580.

Xu, T., Yu, X., Perlik, A. J., Tobin, W. F., Zweig, J. A., Tennant, K., Jones, T., and Zuo, Y.
(2009). Rapid formation and selective stabilization of synapses for enduring motor memories.
Nature, 462(7275):915–919.

Yang, G., Pan, F., and Gan, W.-B. (2009). Stably maintained dendritic spines are associated
with lifelong memories. Nature, 462(7275):920–924.

Yang, G. R., Joglekar, M. R., Song, H. F., Newsome, W. T., and Wang, X.-J. (2019). Task repre-
sentations in neural networks trained to perform many cognitive tasks. Nature Neuroscience,
22(2):297–306.

Ye, J. and Pandarinath, C. (2021). Representation learning for neural population activity with
neural data transformers. arXiv preprint arXiv:2108.01210.

Yu, B. M., Cunningham, J. P., Santhanam, G., Ryu, S., Shenoy, K. V., and Sahani, M. (2008).
Gaussian-process factor analysis for low-dimensional single-trial analysis of neural population
activity. In Advances in Neural Information Processing Systems, volume 21.

Yu, B. M., Cunningham, J. P., Santhanam, G., Ryu, S. I., Shenoy, K. V., and Sahani, M.
(2009). Gaussian-process factor analysis for low-dimensional single-trial analysis of neural
population activity. Journal of Neurophysiology, 102(1):614–635.

Yu, J. Y. and Frank, L. M. (2015). Hippocampal–cortical interaction in decision making.
Neurobiology of learning and memory, 117:34–41.

Yuille, A. and Kersten, D. (2006). Vision as Bayesian inference: analysis by synthesis? Trends
in cognitive sciences, 10(7):301–308.

Zeng, G., Chen, Y., Cui, B., and Yu, S. (2019). Continual learning of context-dependent
processing in neural networks. Nature Machine Intelligence, 1(8):364–372.

Zenke, F., Poole, B., and Ganguli, S. (2017). Continual learning through synaptic intelligence.
In International Conference on Machine Learning, pages 3987–3995. PMLR.

Zhao, Y. and Park, I. M. (2017). Variational latent Gaussian process for recovering single-trial
dynamics from population spike trains. Neural computation, 29(5):1293–1316.

References 115

Zhao, Y., Yates, J. L., Levi, A. J., Huk, A. C., and Park, I. M. (2020). Stimulus-choice (mis)
alignment in primate area MT. PLoS computational biology, 16(5):e1007614.

Zimnik, A. J. and Churchland, M. M. (2021). Independent generation of sequence elements by
motor cortex. Nature Neuroscience, 24(3):412–424.

Zintgraf, L., Shiarlis, K., Igl, M., Schulze, S., Gal, Y., Hofmann, K., and Whiteson, S. (2019).
VariBAD: A very good method for Bayes-adaptive deep RL via meta-learning. arXiv preprint
arXiv:1910.08348.

Ziv, Y., Burns, L. D., Cocker, E. D., Hamel, E. O., Ghosh, K. K., Kitch, L. J., El Gamal, A.,
and Schnitzer, M. J. (2013). Long-term dynamics of CA1 hippocampal place codes. Nature
Neuroscience, 16(3):264–266.

Appendix A

Bayesian GPFA

Further analyses of preparatory dynamics in the primate reaching task

reach direction

re
ac

h
di

re
ct

io
n

a target onset (Y)

reach direction

re
ac

h
di

re
ct

io
n

b pre-movement (Y)

reach direction

re
ac

h
di

re
ct

io
n

c target onset (FA)

reach direction

re
ac

h
di

re
ct

io
n

d pre-movement (FA)

m
in sim

.
m

ax sim
.

0
0.5

0.0

0.5

sim
ila

rit
y

(z
-s

co
re

)

e target onset
bGPFA
Y
FA

0

pre-movement

200 100 0 100 200
time from movement onset (ms)

0

1

2

m
od

ul
at

io
n/

sp
ee

d

f
hand speed

Figure A.1 Further analyses of M1 preparatory dynamics. (a-d) Similarity matrix of
raw neural activity YYY (a & b) and latent states found by FA (c & d) at target onset (a &
c) and 75 ms prior to movement onset (b & d), with analyses performed as in Figure 3.3f.
(e) z-scored similarity as a function of difference in reach direction; here, the mean similarity
across pairs of reaches is shown at target onset (left) and 75 ms prior to movement onset (right).
The bGPFA latent states show much stronger modulation than either raw neural activity
(YYY) or latent states from FA. (f) Modulation of similarity by reach direction as a function of
time from movement onset. Modulation was defined as the difference between maximum and
minimum z-scored similarity as a function of difference in reach direction (peak-to-trough in
panel e). Blue solid line indicates the z-scored hand speed, confirming the absence of premature
movement relative to our definition of movement onset. bGPFA latent similarity increases well
before hand speed and starts decreasing substantially before the hand speed peaks. Dashed
lines indicate modulation at target onset for each method.

We performed analyses as in Figure 3.3f using the raw data (YYY) and using factor analysis (FA)
with 20 latent dimensions instead of using the bGPFA latent states. The raw data YYY showed a
high degree of similarity at target onset compared to movement onset, but little discernable
structure as a function of reach direction at either point in time (Figure A.1a-b).

118 Bayesian GPFA

While the FA latent distances exhibited no modulation by reach direction at target onset,
FA did discover weak modulation at movement onset (Figure A.1a-b). This is qualitatively
consistent with our results using bGPFA but with a lower signal to noise ratio. Here and in
Section 3.1.3, we defined movement onset as the first time during a reach where the cursor
velocity exceeded 0.025ms−1, and we observed little to no quantifiable movement before this
point (Figure A.1f). We also discarded ‘trials’ with premature movement for all analyses here
and in Section 3.1.3, which we defined as reaches with a reaction time of 75 ms or less.

To quantify and compare how neural activity was modulated by the similarity of reach directions
for different analysis methods, we first computed z-scores of the similarity matrices for both
the bGPFA latent states, raw activity, and the latent states from FA. z-scores were calculated
as z = (SSS−mean(SSS))/std(SSS) for each similarity matrix SSS, and the diagonal elements were
excluded for this analysis. We then computed the mean of the z-scored pairwise similarities as
a function of difference in reach direction across all pairs of 762 reaches. We found that none
of the datasets exhibited notable modulation at target onset (Figure A.1e). In contrast, the
neural data exhibited modulation by reach similarity 75 ms prior to movement onset. This
modulation was strongest for the bGPFA latent states followed by the FA latents, and the
modulation by reach similarity was very weak for the raw neural activity (Figure A.1e). To see
how this modulation by reach direction varied as a function of time from movement onset, we
computed the difference (δz) between the maximum and minimum of the modulation curves
and repeated this analysis at different times prior to and during the reach process. We found
that the modulation in neural activity space increased before any detectable movement, with
bGPFA showing the strongest signal followed by factor analysis and then the raw activity
(Figure A.1f). Indeed, the bGPFA latent modulation was maximized near movement onset,
while the reach speed did not peak until several hundred milliseconds after movement onset
where bGPFA latent trajectories have started to converge again. Taken together, these results
confirm that our analyses of bGPFA preparatory states do not reflect premature movement
onset, and that they are not artifacts of the temporal correlations introduced by our GP prior
since noisier but qualitatively similar results arise from the use of factor analysis.

For further comparison with non-Bayesian Gaussian process factor analysis, we also fitted
Poisson GPFA (P-GPFA) to the primate dataset using our variational inference approach
for scalability but without a prior over CCC (Section 3.1.2). For this analysis, we used 16
latent dimensions as inferred by bGPFA, and we subselected latent processes with timescales
≤ 200 ms to study the putatively fast motor preparation as for bGPFA. We then orthogonalized
the latent dimensions by performing an SVD on the loading matrix (see Yu et al., 2009 for
details). Similar to our results from bGPFA, we found that the latent trajectories became
modulated by movement direction prior to movement onset (Figure A.2a) with a similar degree
of modulation to bGPFA (δz = 1.01 for bGPFA; δz = 0.99 for P-GPFA). When visualizing the
latent trajectories for the example reaches considered in Figure 3.3e, we also found that these

119

reach direction

re
ac

h
di

re
ct

io
n

a target onset

reach direction

pre-movement

m
in sim

.
m

ax sim
.

latent dim 1

la
te

nt
 d

im
 2

b P-GPFA
right
left

latent dim 1

la
te

nt
 d

im
 2

c FA

Figure A.2 Analyses of M1 dynamics with GPFA and FA. (a) P-GPFA was fitted to
data recorded from M1 during the self-paced reaching task. We computed the similarity matrix
of the latent state at stimulus onset, showing no obvious structure (left), and 75 ms prior to
movement onset, showing modulation by reach direction (right). Reaches are sorted by reach
direction along both axes. (b) Example P-GPFA latent trajectories in the two principal latent
dimensions for five rightward reaches (grey) and five leftward reaches (red). Trajectories are
plotted from the appearance of the stimulus until movement onset (circles; the trajectories
shown are the same as in Figure 3.3e). (c) As in (b), now showing latent trajectories inferred by
factor analysis. These exhibit less discernable structure due to the lack of an explicit smoothness
prior.

diverged by reach direction (Figure A.2b), similar to the bGPFA latent trajectories and unlike
vanilla factor analysis, which assumes temporal independence a priori (Figure A.2c)

S1 activity

In this section, we compare the latent processes inferred for M1 dynamics to those inferred by
applying bGPFA to the recordings from S1. In contrast to the clustering by reach direction in
M1, there was less obvious modulation by movement direction in S1 prior to movement onset
(Figure A.3). To quantify this, we again computed the degree of modulation prior to movement
onset, which was δz = 0.38 for S1 compared to δz = 1.01 for M1. This is also consistent with
our decoding analyses in Figure 3.3b, which showed that activity in M1 predicts movement
100-150 ms into the future while S1 activity is not predictive of future kinematics to the same
extent.

Further reaction time analyses

For analyses of correlations between latent distances and reaction times, we only considered
reaches with a reaction time of at least 125 ms and at most 425 ms, which retained 712 of 762
reaches (Figure A.4a). This is because very long reaction times may reflect the monkey not
being fully engaged with the task during those reaches, and very short reaction times may reflect

120 Bayesian GPFA

latent dim 1

la
te

nt
 d

im
 2

a
right
left

reach direction

re
ac

h
di

re
ct

io
n

b target onset

reach direction

pre-movement

m
in sim

.
m

ax sim
.

Figure A.3 Analyses of S1 dynamics by reach direction. (a) bGPFA was fitted to
data recorded from S1 during the self-paced reaching task. The panel shows example latent
trajectories in the two most informative latent dimensions for five rightward reaches (grey)
and five leftward reaches (red). Trajectories are plotted from the appearance of the stimulus
until movement onset (circles; the trajectories shown are the same as in Figure 3.3e). Unlike
the M1 latent trajectories, there is no obvious clustering by reach direction during movement
preparation. (b) Similarity matrix of the latent state at stimulus onset (left) and 75 ms prior
to movement onset (right). Reaches are sorted by reach direction along both axes, and there is
no obvious structure in either similarity matrix in contrast to the results for the M1 recordings.

spurious movement. To confirm that our finding of a strong correlation between latent distance
and reaction time in Figure 3.3g is not an artifact of the temporal correlations introduced by
the bGPFA generative model, we generated a synthetic control distribution. Here we drew
50,000 synthetic latent trajectories from our learned generative model with trajectory durations
matched to those observed experimentally on each trial. We then computed mean preparatory
states and latent distances to preparatory states as in the experimental data (Section 3.1.3)
and computed correlations with the experimental reaction times. We found a mean correlation
of 0.02 and a range of −0.14 to 0.18 in the synthetic data, suggesting that our generative model
may introduce weak correlations between latent distances and reaction times. However, the
experimentally observed correlation of 0.45 was much larger than what could be expected by
chance. This verifies our finding that the distance from the latent state at target onset to the
corresponding preparatory state has behavioral relevance, with better initial states leading to
shorter reaction times.

Although we already find a fairly strong relationship between latent distances and reaction times,
it is worth noting that several additional considerations may further improve such predictions.
Notably, our naive Euclidean distance metric could be improved by instead defining a metric
based on the probabilistic model itself (Tosi et al., 2014). Additionally, while we categorize
reaches by reach direction, reaches in the same direction can still have different start and end
points on the grid (Figure 3.3a), leading to different posture and muscle activations, which
is likely to significantly affect neural activity. Our analysis by reach direction therefore only
represents a coarse categorization of the rich behavioral space, and it remains to be seen how
neural activity and latent trajectories are affected by e.g. posture during the task.

121

0 200 400 600 800 1000
reaction time (ms)

0

25

50

75

100

fre
qu

en
cy

a

0.0 0.2 0.4
correlation with RT

0

500

1000

1500

2000

fre
qu

en
cy

b
synthetic
mean
data

1000 2000 3000 4000
reach duration (ms)

0

20

40

60

80

fre
qu

en
cy

c

latent state (a.u.)

200

300

400

re
ac

tio
n

tim
e

(m
s)

d

Figure A.4 Further reaction time analyses. (a) Histogram of reaction times across all
succesful reaches. For our correlation analyses, we only considered reaches with a reaction time
between 125 ms and 425 ms (blue vertical lines). (b) Pearson correlations between distance to
prep state and reaction time in synthetic data. Histogram corresponds to correlations between
the true reaction times and 50,000 draws from the learned generative model. Blue dashed line
indicates mean across all synthetic datasets (0.02), which is much smaller than the observed
correlation in the experimental data of 0.45 (blue solid line). (c) Histogram of reach durations
for all reaches with a reaction time between 125 ms and 425 ms. (d) Plot of reaction time
against the value of a long timescale latent dimension at target onset (τ = 1.4 s, ρ= 0.40).

Finally we considered how the dynamics of long-timescale latent processes relate to the reaction
time across trials (c.f. Section 3.1.3). Here we found that the two slowest dimensions had
timescales of τ = 1.4 s and τ = 1.7 s, similar to the timescale of single reaches, which generally
lasted between 1 and 2 seconds (Figure A.4c). Intriguingly, the latent state in these dimensions
at target onset was predictive of reaction time, with Pearson correlations of ρ = 0.40 and
ρ= 0.36 respectively (Figure A.4d). While the information about reaction time contained in
these two dimensions was largely redundant, it was orthogonal to that encoded by the distance
to preparatory state in the fast dimensions. In particular, a linear model had 19.9% variance
explained from the distance to prep in fast dimensions, 15.7% variance explained from the slow
latent dimension with the strongest correlation, and 28.7% when combining these two features,
which corresponds to 80.7% of the additive value.

Latent dimensionality

In this section, we estimate the dimensionality of the primate data as a function of the offset
between M1 and S1 spike times using both bGPFA and participation ratios computed on the

122 Bayesian GPFA

basis of PCA (Recanatesi et al., 2019). The participation ratio is defined as

PR=
(∑

i

λi

)2

/
∑

i

λ2
i , (A.1)

where λi is the ith eigenvalue of the covariance matrix YYY YYY T . When computing the participation
ratio of the data as a function of the M1 spike time shift, we find that the dimensionality
is minimized for a shift of 75-100 ms (Figure A.5). This suggests that the neural recordings
can be explained more concisely when taking into account the offset in decoding between
M1 and S1, which is consistent with the increased log likelihood after shifting the M1 spikes
(Section 3.1.3).

This trend is not directly observable in the number of dimensions retained by bGPFA with and
without a 100 ms shift of the M1 spike times (18.8±0.19 vs 18.7±0.20 respectively across 10
model fits). However, the discrete nature of this dimensionality measure makes it relatively
insensitive to small effects since it relies on stochastic differences in the retention of a dimension
with little information content. We therefore utilized the interpretation of the learned prior
scale s2

d as a measure of variance explained (Appendix A) and defined a ‘participation ratio’ for
bGPFA, similar to the PCA participation ratio considered above:

PRbGP F A =
(∑

d

s2
d

)2

/
∑

d

(
s2

d

)2
. (A.2)

Here we found a strong effect of shifting the M1 spike times, which reduced the dimensionality
from PRbGP F A = 6.16±0.12 to PRbGP F A = 5.62±0.06 (p= 0.001). Additionally, we note that
bGPFA explains the data with only a handful of latent dimensions (19 total dimensions; 6 when
re-weighted as a participation ratio). This is much lower than the dimensionality of 127-129
estimated by the PCA participation ratio, which generally infers higher dimensionalities for
noisier (more ‘spherical’) datasets.

Further validation of bGPFA on synthetic and biological data

In Figure 3.2a-b, we considered the performance of FA, GPFA and bGPFA on synthetic data
with Gaussian noise. To further validate our method in a non-Gaussian setting relevant to the
study of electrophysiological recordings, we also performed similar analyses on (i) synthetic
data with Poisson noise and (ii) experimental recordings from the primate reaching task. In
both cases, we compared FA, GPFA and bGPFA with Poisson noise, since such Poisson noise
models are common in the neuroscience literature (Macke et al., 2012; Pandarinath et al., 2018;
Wu et al., 2017a; Zhao and Park, 2017). We note that these non-conjugate models are all
readily implemented within our inference framework as special cases of bGPFA.

123

100 0 100 200 300
M1 spike time shift (ms)

128

130

132

pa
rti

cip
at

io
n

ra
tio

a

Figure A.5 Neural dimensionality. (a) Participation ratio (Equation A.1) as a function of
temporal offset added to M1 spike times in the primate dataset.

Synthetic data In this section, we perform analyses similar to Figure 3.2b to validate bGPFA
and its capacity for automatic relevance determination on synthetic data. We first generated a
dataset drawn from the GPFA generative model but with a Poisson noise model after passing
the activations through a softplus nonlinearity

YYY ∼ Poisson(log [1+expCCCXXX]) . (A.3)

We then fitted Factor analysis, GPFA, and bGPFA with and without ARD to the resulting
dataset, all with Poisson observation models and exponential non-linearities (Appendix A; we
denote these Poisson models as ‘P-FA’ etc.). To quantify performance, we computed the cross-
validated predictive log likelihood Lpred =∑

it logpP oisson(yit|fit), where i and t index neurons
and time points in a held-out test set (results were similar when considering MSEs). When
considering Lpred as a function of latent dimensionality, we found that both P-FA and P-GPFA
exhibited a clear maximum at the true dimensionality of D∗ = 3 while P-bGPFA without ARD
was robust to overfitting, similar to our findings for the Gaussian models (Figure 3.2b). Finally,
bGPFA with ARD was capable of automatically recovering this dimensionality as well as the
maximum predictive performance achieved across the other models.

Experimental data We proceeded to perform an analysis as above on data from the self-
paced monkey reaching dataset (O’Doherty et al., 2017). For this analysis, we used a smaller
subset of the data for computational convenience, considering only 1000 timepoints but including
all 200 neurons. We performed these analyses in 10-fold cross-validation, averaging performance
over folds and repeating the entire analysis across 5 different random seeds. We again fitted
P-FA and P-GPFA and found that these models exhibited a clear maximum in their predictive
log likelihoods. As for the synthetic data, P-bGPFA without ARD was robust to overfitting, and
the introduction of ARD allowed us to infer the optimal latent dimensionality of D∗ ≈ 4 as well
as achieving optimal performance without a priori assumptions about the latent dimensionality.
The robustness to overfitting of bGPFA both with and without ARD suggests that it could

124 Bayesian GPFA

2 4 6 8 10
latent dimensionality

1.14

1.12

1.10

1.08

1.06

1.04

pr
ed

ict
iv

e
CV

 L
L

a synthetic

P-FA
P-GPFA

P-bGPFA (no ARD)
P-bGPFA (ARD)

2 4 6 8 10
latent dimensionality

0.504

0.502

0.500

0.498

0.496

pr
ed

ict
iv

e
CV

 L
L

b experimental

Figure A.6 Bayesian GPFA applied to spike count data. (a) Cross-validated predictive
log likelihoods of factor analysis (yellow), GPFA (green), and Bayesian GPFA without ARD
(blue) fitted to synthetic data with a ground truth dimensionality of three for different model
dimensionalities. All methods used a Poisson observation model p(ynt|fnt). bGPFA with ARD
recovered the performance of the optimal non-ARD models without requiring a search over
latent dimensionalities (black). (b) As in (a), now for models applied to a subset of the monkey
reaching data analyzed in Section 3.1.3.

also be a valuable tool in settings with large simultaneous recordings of thousands of neurons,
which are becoming increasingly relevant with recent advances in neural recording technologies
(Pachitariu et al., 2017; Steinmetz et al., 2021).

Taken together, these results further validate the utility of bGPFA on both synthetic and
biological data with non-conjugate noise models. They also highlight the utility of automatic
relevance determination in practice, where it obviates the need to perform extensive cross-
validation to select an appropriate latent dimensionality for the experimental data.

Parameterizations of the approximate GP posterior

In this section, we compare different forms of the variational posterior q(XXX) discussed in
Section 3.1.2. For factorizing likelihoods, the optimal posterior takes the form

q(xxxd)∝ p(xxx)
∏

t

N (xt|gt,vt), (A.4)

where gt and vt are variational parameters (Opper and Archambeau, 2009). Equation A.4
might therefore seem to be an appropriate form of the variational distribution q(XXX). However,
this formulation is computationally expensive.

125

Instead, we therefore consider approximate parameterizations of the form

q(xxxd) =N (µµµd,ΣΣΣd) (A.5)

µµµd =KKK
1
2
d νννd (A.6)

ΣΣΣd =KKK
1
2
d ΛΛΛdΛΛΛT

dKKK
1
2
d , (A.7)

where KKK
1
2
d is a matrix square root of the prior covariance matrix KKKd, and νννd ∈ RT is a vector

of variational parameters. This formulation simplifies the KL divergence term for each latent
dimension in Equation 3.6 from

KL[q(xxxd)||p(xxxd|ttt)] = 1
2
(
Tr(KKK−1

d ΣΣΣd)+ log |KKKd|− log |ΣΣΣd|+µµµT
dKKK

−1
d µµµd−T

)
(A.8)

to
KL[q(xxxd)||p(xxxd|ttt)] = 1

2
(
∥ΛΛΛd∥2F−2log |ΛΛΛd|+ ||νννd||2−T

)
. (A.9)

In the following, we drop the ·d subscript to remove clutter, and we use the notation ΨΨΨ =
diag(ψ1, ...,ψT) with positive elements ψt > 0, to denote a positive definite diagonal matrix.

Square root of the prior covariance

For a stationary prior covariance KKK, we can directly parameterize KKK
1
2 by taking the square

root of k(·, ·) in the Fourier domain and computing the inverse Fourier transform. For the RBF
kernel used in this work we get

k(ti, tj) = exp
(
−(ti− tj)2

2τ2

)
(A.10)

k
1
2 (ti, tj) =

(2
π

) 1
4
(
δt

τ

) 1
2

exp
(
−(ti− tj)2

τ2

)
. (A.11)

In this expression, δt is the time difference between consecutive data points, we have assumed
a signal variance of 1 in the prior kernel, and we note that our parameterization only gives rise
to the exact matrix square root of the RBF kernel in the limit where T ≫ τ . Note that this is
the case in the present work since T ≈ 30 minutes is much larger than the longest timescales
learned by bGPFA (τ ≈ 2 s). For most experiments in neuroscience, observations are binned
such that time is on a regularly spaced grid and our parameterization can be applied directly.
In other cases, kernel interpolation should first be used to construct a covariance matrix with
Toeplitz structure (Wilson and Nickisch, 2015; Wilson et al., 2015).

126 Bayesian GPFA

Parameterization of the posterior covariance

We now proceed to describe the various parameterizations of ΛΛΛ whose performance is compared
in Figure A.7. Other parameterizations are explored in Challis and Barber (2013).

Diagonal ΛΛΛ We parameterize each latent dimension with ΛΛΛ = ΨΨΨ. This gives rise to a KL
term:

2KL[q(xxx)||p(xxx)] =
∑

t

ψ2
t + ||ννν||2−T −2

∑
t

logψt. (A.12)

We can compute ΛΛΛvvv in linear time since ΛΛΛ is diagonal which allows for cheap differentiable
sampling:

ηηη ∼N (0, III) (A.13)

sample =KKK
1
2 (ΛΛΛηηη+ννν), (A.14)

where the multiplication by KKK
1
2 is done in O(T logT) time in the Fourier domain.

Circulant ΛΛΛ We parameterize each latent dimension with ΛΛΛ = ΨΨΨCCC. Here, CCC ∈ RT ×T is
a positive definite circulant matrix with 1 + T

2 (integer division) free parameters, which we
parameterize directly in the Fourier domain as ĉcc= rfft(ccc) ∈ R1+T/2, where ccc is the first column
of CCC with ĉcc≥ 0 elementwise. We compute the KL as

2KL[q(xxx)||p(xxx)] =
(∑

t

c2
t

)(∑
t

ψ2
t

)
+ ||ννν||2−T −2

∑
t

logψt−2log |CCC| (A.15)

log |CCC|= log ĉ1 +log ĉT
2 +1 +2

T
2∑

i=2
log ĉi (even T) (A.16)

log |CCC|= log ĉ1 +2
T +1

2∑
i=2

log ĉi (odd T), (A.17)

where ccc= irfft(ĉcc). We can sample differentiably in O(T logT) time by computing

ηηη ∼N (0, III) (A.18)
CCCηηη = irfft(ĉcc⊙ rfft(ηηη)) (A.19)

sample =KKK
1
2 (ΨΨΨCCCηηη+ννν), (A.20)

where ⊙ denotes the complex element-wise product.

127

Low-rank ΛΛΛ We let QQQ ∈ Vr(RT) such that QQQTQQQ= IIIr and write

ΛΛΛ = IIIT −QQQΨΨΨQQQT , (A.21)

where we now constrain 0 < ψi < 1 to maintain the positive definiteness of ΛΛΛ. In practice,
we keep QQQ on the Stiefel manifold (i.e. QQQTQQQ = IIIr) by (differentiably) computing the QR
decomposition of a T × r matrix of free parameters.

Circulant inverse ΛΛΛ We let CCC be a circulant positive definite matrix as above and parame-
terize

ΛΛΛ = (III+ΨΨΨCCCΨΨΨ)−1 . (A.22)

Computing ΛΛΛvvv products is done using the conjugate gradient algorithm, taking advantage of
fast products with ΨΨΨ and CCC; the same algorithm is also used to stochastically estimate log |ΛΛΛ|
and its gradient (see the appendix of Rutten et al., 2020).

Toeplitz inverse ΛΛΛ This proceeds just as for the circulant inverse form, with the circulant
matrix CCC replaced by an arbitrary Toeplitz matrix (also exploiting fast TTTvvv products):

ΛΛΛ = (III+ΨΨΨTTTΨΨΨ)−1 . (A.23)

Numerical comparisons between different parameterizations

To compare these parameterizations, we generated a synthetic dataset (Figure A.7a, orange dots)
over T = 1000 time bins by drawing samples {y1, . . . ,yT } as yt = xt +σtξt. Here, ξ(t)∼N (0,1)
with non-stationary σt growing linearly from 0.1 to 0.5 over the whole range 0≤ t < T , and
xi ∼N (0,KKK1/2KKK1/2) with KKK1/2 given by Equation A.11. We fixed the generative parameters
to their ground truth and optimized the ELBO w.r.t. the variational parameters in this simple
regression setting. We found that all of the parameterizations accurately recapitulated the GP
posterior mean (Figure A.7a). However, the degree to which they captured the non-stationary
posterior covariance and data log likelihood varied between methods (Figure A.7b-c). To
quantify this, we computed the difference between the asymptotic ELBO of each method and
the exact log marginal likelihood. This ELBO gap was small for the circulant parameterization,
the inverse methods, and the low rank parameterization with sufficiently high r. Although
the circulant parameterization did not fully capture the non-stationary aspect of the posterior
variance, this did not affect the ELBO gap substantially. Importantly, however, the circulant
parameterization was more than an order of magnitude faster per gradient evaluation than
the other methods with comparable accuracy (Figure A.7c). For these reasons as well as the
excellent performance in a latent variable setting (Section 3.1.3, Section 3.1.3, Appendix A), we

128 Bayesian GPFA

-3
0
3

0 T
2

T

-300

-200

-100

0

0.001 0.01 0.1 1

0
0.2
0.4

-10 -5 0 5 10

exact posterior

diagonal (Λ = Ψ)

low rank (Λ = I − QΨQT), r = 10

low rank (r=40)

low rank (r=80)

circulant (Λ = ΨC)

circulant inverse (Λ = (I + ΨCΨ)−1)

time

Toeplitz inverse (Λ = (I + ΨTΨ)−1)

E
LB

O
ga

p
(n

at
s)

time per gradient evaluation [s]

posterior cov(T2 , t)

t − T
2

a b

c

Figure A.7 Comparisons of different
forms of the approximate posterior
q(xxx). (a) Synthetic data (orange dots)
plotted together with the exact posterior
(black) as well as the variational posteriors
inferred by each whitened parameteriza-
tion. The solid lines denote the (approxi-
mate) posterior means, and shaded areas
indicate ±1 posterior standard deviations.
(b) Slice through the posterior covariance
(Covx∼q(x)

[
xT/2,xt

]
) for the true posterior

(top and black dotted lines) and the approx-
imate methods. Each method has different
characteristics, and the circulant parame-
terization provides a good qualitative fit
at very low computational cost. (c) We
defined the ‘ELBO gap’ of each method as
ELBO−LL, where LL is the true data log
likelihood. We plotted this against the time
per gradient evaluation and found that the
circulant parameterization achieved high
accuracy with cheap gradients.

used the circulant parameterization for all experiments. However, repeating all analyses with
a simple diagonal parameterization also lead to good performance and qualitatively similar
results.

Relation between variational posterior over F and true posterior

Here we show that our parameterization of q(fffn) includes the exact posterior in the case of
Gaussian noise.

129

When the noise model is Gaussian (i.e., p(yyyn|fffn) =N (yyy|fffn,σ
2
nI)), we can compute the posterior

over fff∗
n = fn(XXX⋆) at locations XXX⋆ in closed form:

fff∗
n|XXX⋆,XXX,yyyn ∼N (XXX⋆TSSS2XXXK̂KK

−1
yyyn,XXX

⋆TSSS(III−XXXK̂KK−1
XXXT)SSSXXX⋆) (A.24)

where K̂KK =XXXTSSS2XXX+σ2
nIII. Note that the posterior is low-rank as the rank of III−XXXK̂KK−1

XXXT

is at most D. This means that when we do variational inference, we can parameterize our
approximate posterior as:

q(fff∗
n) =N (fff |XXX⋆TSSSνννn,XXX

⋆TSSSLLLnLLL
T
nSSSXXX

⋆) (A.25)

where νννn ∈RD and LLLn ∈RD×D are the parameters of the approximate posterior (Section 3.1.2).
We see that this parameterization is exact when:

νννn = SSSXXXK̂KK
−1
yyyn (A.26)

LLLnLLL
T
n = III−XXXK̂KK

−1
XXXT . (A.27)

Note that the right-hand side of Equation A.27 is guaranteed to be positive definite because
the true posterior must be positive definite. Importantly, for this parameterization, the KL
term in Equation 3.10 simplifies to

KL(q(fffn|XXX)||p(fffn|XXX)) = KL(N (νννn,LLLnLLL
T
n)||N (0, III)), (A.28)

which is independent of XXX and allows us to do efficient inference due to the low dimensionality
of νννn and LLLn.

Relation between variational posterior over F and SVGP

For general non-Gaussian noise models, the parameterization in Appendix A will no longer be
exact. However, here we show that it is in this case equivalent to a stochastic variational Gaussian
process (SVGP; Hensman et al., 2013). In SVGP, we choose a variational distribution:

q(uuu) =N (uuu|ZZZTSSSµµµ,ZZZTSSSMMMMMMTSSSZZZ) (A.29)

at inducing points ZZZ ∈ RD×m, where µµµ and MMM are the “whitened” parameters (Hensman et al.,
2015b). This gives an approximate posterior:

q(fff∗) = Eq(uuu) [p(fff |uuu)] (A.30)
=N (fff |XXX⋆TSSSΠΠΠzµµµ;XXX⋆TSSSΠΠΠz(MMMMMMT − III)ΠΠΠzSSSXXX

⋆) (A.31)

130 Bayesian GPFA

where ΠΠΠzzz = SSSZZZ(ZZZTSSS2ZZZ)−1ZZZTSSS. If we choose m = D inducing points such that ZZZ ∈ RD×D

and make sure ZZZ has full rank, then ΠΠΠz = III and thus

q(fff∗) =N (fff |XXX⋆TSSSµµµ,XXX⋆TSSS(MMMMMMT − III)SSSXXX⋆). (A.32)

We recover the parameterization in Section 3.1.2 when

µµµ= ννν and MMMMMMT − III = LLLLLLT . (A.33)

For these more general noise models, the whitened parameterization of q(fff) still gives rise to a
computationally cheap KL divergence that is independent of XXX as in Equation A.28:

KL(q(fffn|XXX)||p(fffn|XXX)) = KL(N (νννn,LLLnLLL
T
n)||N (0, III)). (A.34)

In summary, we have shown that (i) our parameterization of q(fffn) has sufficient flexibility to
learn the true posterior when the noise model is Gaussian (Appendix A), and (ii) it is equivalent
to performing SVGP where the locations of the inducing points do not matter provided that
their rank is at least as high as the number of latent dimensions.

Automatic relevance determination

Here we briefly consider why introducing a prior over the factor matrix enables automatic
relevance determination. These ideas reflect results by Bishop (1999) and our experiments in
Section 3.1.3.

For simplicity, we will first consider the case of factor analysis where p(XXX) =∏
d,tN (xdt;0,1).

This gives rise to a marginal likelihood (with Gaussian noise) equal to

logp(YYY) =
∑

t

logN (yyyt;0,CCCCCCT +ΣΣΣ), (A.35)

where ΣΣΣ = diag(σ2
1, ...,σ

2
N) is a diagonal matrix of noise parameters. It is in this case quite

clear that the optimal marginal likelihood is a monotonically increasing function of the latent
dimensionality, since any marginal likelihood reachable with a certain rank D is also reachable
with a larger rank D′ >D; increasing D can only increase model flexibility. We could in this
case threshold the magnitude of the columns of CCC to subselect more ‘informative’ dimensions,
but this is not inherently different from putting an arbitrary cut-off on the variance explained in
PCA, and there is no Bayesian “Occam’s razor” built into the method (MacKay, 2003).

Consider now the case where we put a unit Gaussian prior on cnd. In this case, {cnd} are no
longer parameters of the model but rather latent variables to be inferred, which intuitively

131

should reduce the risk of overfitting. To expand on this intuition, consider the ELBO (c.f.
Section 3.1.2) that results from introducing such a prior over cnd:

logp(YYY)≥ Eq(XXX) [logp(YYY |XXX)]−
∑
d,t

KL [q(xdt)||N (0,1)] (A.36)

logp(YYY |XXX) =
∑

n

logN (yyyn;0,XXXTXXX+σnIII). (A.37)

Here we see that if a dimension d is truly uninformative, it should have xdt = 0 ∀t to avoid
contributing noise to the likelihood term via XXXTXXX. However, reducing this noise will increase
the prior KL term, driving it to infinity in the limit of zero noise since the variational posterior
over the dth latent at time t, q(xdt), is in this case a delta function at zero. Optimizing the
ELBO therefore involves a balance between mitigating the noise induced by XXXTXXX and reducing
the KL penalty, with both of these terms contributing to a decreased ELBO compared to the
model without uninformative dimensions. Thus the prior over cnd counteracts the overfitting
that would normally occur when increasing the latent dimensionality in classical factor analysis,
and this Bayesian treatment will lead to a decrease in the ELBO with increasing dimensionality
beyond the optimal D⋆ that is needed to adequately explain the data.

Finally let us consider the case where we learn the prior scale of the factor matrix, such
that cnd ∼ N (0,s2

d) with sd optimized w.r.t. the ELBO. Critically, the likelihood term now
becomes:

logp(YYY |XXX) =
∑

n

logN (yyyn;0,XXXTSSS2XXX+σnIII). (A.38)

with SSS = diag(s1, . . . ,sD). In this case, adding uninformative dimensions beyond the optimal
D⋆ still cannot increase the ELBO (in the limit of large N). However, letting sd → 0 for
these superfluous dimensions will prevent them from contributing to p(YYY |XXX), thus allowing
q(xdt)→N (0,1) to drive the prior KL term to zero for these dimensions. In this limit, we
recover both the ELBO and the posteriors associated with the D⋆- dimensional model. We
thus have a built-in Occam’s razor which will shave off any uninformative latent dimensions,
and these will be identifiable as dimensions for which sd ≈ 0 and q(xdt)≈N (0,1).

These ideas generalize to GPFA where the posterior over latents will instead approach the GP
prior q(xxxd)≈N (0,KKK) for uninformative dimensions. This corresponds to the limit of ννν→ 000,
CCC→ III, and ΨΨΨ→ III in our circulant parameterization in Section 3.1.2 and Appendix A. In all of
our simulations, we found a clear clustering of dimensions after training with some clustered
near zero sd, and others clustered with much larger sd (Figure 3.2c and Figure 3.3b). Note
that in practice we do not actively truncate the model by discarding dimensions with sd ≈ 0
but merely use the terminology to indicate that these dimensions have negligible contributions
to the posterior predictive q(yyyn), as well as to the latent posteriors q(xxxd) for the dimensions
with large sd.

132 Bayesian GPFA

Most informative dimensions

In this work, we refer to the latent dimensions with the highest values of sd as the ‘most
informative dimensions’. We do this because (i) observing the value of the corresponding latent
xd decreases the variance of the expected distribution of neural activity more as sd increases,
and (ii) the Fisher information of xd increases as sd increases.

To show this, we consider how the distribution over fn (the activity of neuron n) given cccn (the
nth row of CCC) changes when xd (the value of the dth latent) is known, and how this varies with
sd. In the following, we omit the ·n subscript for notational simplicity, and we note that f , xd

and cd are all scalar values. With unknown xd, f is Gaussian with zero mean and variance
Ep(xxx)

[
cccTxxxxxxT ccc

]
= cccT ccc. Thus,

p(f |ccc) =N (f ;0, cccT ccc) (A.39)

In contrast, for known xd, we have

p(f |ccc,xd) =N (f ;cdxd, ccc
T
−dccc−d), (A.40)

where ccc−d is ccc with the dth element removed. We thus see that the decrease in variance of f
from observing xd is c2

d. Finally, we can approximate the process of averaging this quantity
over neurons by noting that cd ∼N (0,s2

d) and marginalising out ccc:

Ep(ccc)[σ2
f |ccc−σ

2
f |ccc,xd

] = Ep(ccc)[c2
d] = s2

d, (A.41)

where σ2
f |ccc is the variance of p(f |ccc). Thus, s2

d can be interpreted as the expected decrease in
the variance of the denoised neural activity f when learning the value of the dth latent.

This can also be understood in information-theoretic terms by considering the Fisher information
of the dth latent dimension which is given by

I(xd|ccc) =−Ep(f |xd,ccc)

[
∂2

∂x2
d

logp(f |xd, ccc)
]

(A.42)

=

∑
d′ ̸=d

c2
d′

−1

. (A.43)

To relate this quantity to our prior scale parameters {sd}, we consider the expectation of the
inverse Fisher information:

Ep(ccc)[I(xd|ccc)−1] =
∑
d′ ̸=d

s2
d′ . (A.44)

For a given set of latent dimensions [1,D] with corresponding {sd}D1 , we thus see that the
expected inverse Fisher information is minimized for the dimension with the highest value of

133

sd. In Figure 3.2 and Figure 3.3 we use sd together with the posterior latent mean parameters
νννd to identify ‘discarded’ dimensions.

Noise models and evaluation of their expectations

Gaussian The Gaussian noise model is given by

logp(ynt|fnt) =−1
2 log(2π)− 1

2(ynt−fnt)2/σ2
n, (A.45)

where σn is a learnable parameter. In this case we can easily compute the expected log-density
under the approximate posterior analytically:

Eq(fnt|XXX) [logp(ynt|fnt)] =−1
2

(
log(2π)+ (ynt−µnt)2 +Σntt

σ2
n

)
, (A.46)

where q(fffn|XXX) =N (fffn;µµµn,ΣΣΣn) and Σntt is the approximate posterior variance of neuron n at
time t (i.e., the tth diagonal element of ΣΣΣn).

Poisson The Poisson noise model is given by

logp(ynt|fnt) = ynt logg(fnt)−g(fnt)− log(ynt!), (A.47)

where g is a link function. If we choose an exponential link function (i.e., g(x) = exp(x)), we
can compute in closed-form the expected log-density of the approximate posterior as:

Eq(fnt|XXX) [logp(ynt|fnt)] = Eq(fnt|XXX) [yntfnt− exp(fnt)− log(ynt!)] (A.48)

= yntµnt− exp
(
µnt + 1

2Σntt

)
− log(ynt!). (A.49)

For the analyses shown in Figure 3.2c-d, we use the exponential link function.

For general link functions g, we may not be able to evaluate the expected log-density in
closed-form. In this case, we approximate it with Gauss-Hermite quadrature:

Eq(fnt|XXX) [logp(ynt|fnt)]≈
1√
π

kGH∑
i=1

ωi logp(ynt|f (i)
nt) (A.50)

where

ωi = 2kGH−1kGH!
√
π

kGH
2[HkGH−1(ri)]2

, (A.51)

f
(i)
nt =

(√
2Σntt

)
ri +µnt, (A.52)

134 Bayesian GPFA

Hk(r) are the physicist’s Hermite polynomials, and ri with i= 1, . . . ,k are roots of Hk(r). For
a given order of approximation kGH, we can evaluate both ωi and ri using standard numerical
software packages such as Numpy. In practice, we find that kGH = 20 gives an accurate
approximation to the expected log-density under the approximate posterior. Note that we
could also estimate the expectation over q(fnt) for general link functions g using a Monte Carlo
estimate, but we use Gauss-Hermite quadrature in this work since it has a lower computational
cost and lower variance.

Negative binomial The negative binomial noise model is given by

logp(ynt|fnt) = log
(
ynt +κn−1

ynt

)
+κn log(1−g(fnt))+y log(g(fnt)) , (A.53)

where g(fnt) denotes the probability of success in a Bernoulli trial. Here, each success corresponds
to the emission of one spike in bin t, and thus p(ynt|fnt) is the distribution over the number
of successful trials (spikes) before reaching κn failed trials. The link function g(x) : R→ [0,1)
maps fnt to a real number between 0 and 1. In practice we use a sigmoid link-function
g(x) = 1/(1+exp(−x)).

In this model, κn is a learnable parameter, which modulates the overdispersion of the distribution
since the mean and variance of p(ynt|fnt) are given by:

µNB = g(fnt)κn

1−g(fnt)
(A.54)

σ2
NB = µNB

(
1+ µNB

κn

)
. (A.55)

This is the parameter which we compare between the ground truth and trained models in
Figure 3.2, and we see that the Poisson model is recovered for neuron n as κn→∞.

For the negative binomial noise model we cannot compute the expected log-density in closed-
form. We instead approximate this expectation using Gauss-Hermite quadrature as described
above.

Implementation

In this section, we provide pseudocode for bGPFA (Algorithm 1) with the circulant parameteri-
zation for q(XXX) and discuss other implementation details.

Note that we need to sample the full trajectory xxxd before subsampling for each batch due to
the correlations introduced by KKK. In practice, we run the optimization for 2000 passes over the
full data which we found empirically lead to convergence of the ELBO. We used M = 20 Monte

135

Algorithm 1: Bayesian GPFA with automatic relevance determination
1 input: data YYY ∈ RN×T , maximum latent dimensionality D, # of Monte Carlo samples M ,

learning rate γ
2 parameters: θ = {{sd}D1 ,{τd}D1 ,{νννd}D1 ,{c̃ccd}D1 ,{ΨΨΨd}D1 ,{LLLn}N1 ,{ν̂ννn}N1 ,{σ̂n or κn}N1 }
3
4 while not converged do
5 ∇L← 0
6 for batch in batches do
7
8 %For each of M Monte Carlo samples
9 for m= 1 :M do

10
11 % sample from approximate posterior q(XXX)
12 for d= 1 :D do
13 ηηη

(m)
d ∼N (000, IIIT)

14 kkk
1
2
d = σ 1

2 ,d exp
(
− (ttt−t0)2

2τ2
1
2 ,d

)
// single column of KKK

15 xxx
(m)
d = Toeplitz_mult(kkk

1
2
d ,νννd +CCCηηη

(m)
d) // Appendix A

16 XXXm = [xxx(m)
1 ; . . . ;xxx(m)

d]
17
18 % compute q(FFF) and Eq(FFF) [p(YYY |FFF)]
19 µ̂µµn =XXX⊤

mν̂ννn // variational mean

20 σ̂σσ2
n = diag

(
XXXT

mSSSLLLnLLL
⊤
nSSSXXXm

)
21 logp(m)

Y F =∑
n,t∈batchEN (fnt;µ̂nt,σ̂2

nt) [logp(ynt|fnt)] // Appendix A

22
23 % compute KL terms
24 KLx = size(batch)

size(data)
∑

d KL[q(xxxd)||p(xxxd)] // Appendix A

25 KLf = size(batch)
size(data)

∑
n KL[q(fffn)||p(fffn)] // Appendix A

26
27 % update gradient with batch gradient
28 L̃= 1

M

∑
m logp(m)

Y F −KLx−KLf

29 ∇L←∇L+∇L̃
30

31 % update parameters based on total gradients (we use Adam in practice)
32 θ← θ+γ∇L

Carlo samples for each update step when fitting synthetic data and M = 10 for the primate
data. For all models, q(XXX) was initialized at the prior p(XXX). The prior scale parameters were
initialized as sd = ρ||cccd||22 where cccd is the dth row of the factor matrix CCC found by factor analysis
(Pedregosa et al., 2011), and ρ = 3 was found empirically to give good convergence on the

136 Bayesian GPFA

primate data. When using a Gaussian noise model, noise variances were initialized as the σ2
n

found by factor analysis. For negative binomial noise models, we initialized κn = 1
T

∑
t ynt, which

matches the mean of the distribution to the data for f = 0. Length scales τ were initialized at
200 ms for all latent dimensions for the primate data and at ≈ 80% of the ground truth value
for the synthetic data. Synthetic data was fitted on a single GPU with 8GB RAM. Primate
data was fitted on a single GPU with 12GB RAM and took approximately 30 hours for a single
model fit to the full dataset at 25 ms resolution. We also note that when fitting data with a
Gaussian noise model, we mean-subtracted the original data, whereas we include explicit mean
parameters in the Poisson and negative binomial noise models since they are non-linear.

Code availability A PyTorch implementation of bGPFA can be found at https://github.
com/tachukao/mgplvm-pytorch.

Cross-validation and kinematic decoding

In this section, we describe the procedure for computing cross-validated errors in Figure 3.2,
and performing kinematic decoding analyses in Figure 3.3. In these analyses, expectations over
XXX were computed using the posterior mean of q(XXX) and expectations over FFF were computed
using Monte Carlo samples from q(FFF).

Prediction errors To compute cross-validated errors, we divide the time points into a
training and a test set, Ttrain = {t1, t2, ..., tTtrain} and Ttest = {tTtrain+1, ...,T}, and similarly for
the neurons Ntrain and Ntest. We also define Ttot = Ttrain

⋃
Ttest and Ntot =Ntrain

⋃
Ntest. We

first fit the generative parameters θgen of each model to data from all the neurons at the training
time points using variational inference (taking θ to include the variational parameters φ of
qφ(FFF)):

θgen = argmaxθgen
[p(YYY Ntot,Ttrain |θgen)] . (A.56)

We then fix the generative parameters and infer a distribution over latents from the training
neurons recorded at all time points using a second pass of variational inference:

q(XXX1:D,Ttot |YYY Ntrain,Ttot ,θgen)≈ p(XXX1:D,Ttot |YYY Ntrain,Ttot ,θgen). (A.57)

Finally we use the inferred latent states and generative parameters to predict the activity of
the test neurons at the test time points

ŶYY Ntest,Ttest =
∫
YYY p(YYY Ntest,Ttest |XXX1:D,Ttest ,θgen)q(XXX1:D,Ttest |YYY Ntrain,Ttot ,θgen)dXXX1:D,Ttest

(A.58)

https://github.com/tachukao/mgplvm-pytorch
https://github.com/tachukao/mgplvm-pytorch

137

This allows us to compute a cross-validated predictive mean squared error as

ϵ= 1
|Ntest| |Ttest|

||ŶYY Ntest,Ttest−YYY Ntest,Ttest ||22. (A.59)

Kinematic decoding For kinematic decoding analyses, we only considered the latents and
behavior prior to a period of approximately 5 minutes where the monkey disengaged from the
task (the first 1430 seconds; Section 3.1.3). Cursor positions in the x and y directions were
first fitted with cubic splines and velocities extracted as the first derivative of these splines. To
evaluate kinematic decoding performance, we followed Keshtkaran et al. (2021) and computed
the expected activity of all neurons at all time points under our model:

ŶYY =
∫
YYY p(YYY |FFF)q(FFF |XXX)q(XXX|ttt)dXXXdFFF . (A.60)

For non-Gaussian noise models, this can be viewed as the first non-linear step of a decoding
model from the latent states XXX. We then performed 10-fold cross-validation where 90% of the
data was used to fit a ridge regression model which was tested on the held-out 10% of the data.
The regularization strength was determined using 10-fold cross-validation on the 90% training
data. The predictive performance was computed as the mean across the 10 folds. Models were
fitted and evaluated independently for the hand x and y velocities, and the final performance
was computed as the mean variance accounted for across these two dimensions. Results in
Section 3.1.3 are reported as mean ± standard error across 10 different splits of the data into
folds used for cross-validation.

Appendix B

Manifold GPLVMs

The mouse head direction circuit

Figure B.1 The mouse head direction circuit. (a) Population activity recorded from
mouse ADn during foraging. (b) Variational mean inferred by T 1-mGPLVM plotted against
the true mouse head direction. (c) Kernel length scales for the 29 neurons recorded. Dashed
line: ℓ2 = 4 (maximum d in the T 1-kernel). Insets: example neurons with low and high ℓ. (d)
Tuning curves for three example neurons inferred during wake (black) and REM sleep (red).

To highlight the importance of unsupervised non-Euclidean learning methods in neuroscience
and to illustrate the interpretability of the learned GP parameters, we consider a dataset from
Peyrache and Buzsáki (2015) recorded from the mouse anterodorsal thalamic nucleus (ADn;
Figure B.1a). This data has also been analyzed in Peyrache et al. (2015), Chaudhuri et al.
(2019) and Rubin et al. (2019). We consider the same example session shown in Figure 2
of Chaudhuri et al. (2019) (Mouse 28, session 140313) and bin spike counts in 500 ms time
bins for analysis with mGPLVM. When comparing cross-validated log likelihoods for T 1- and
R1-mGPLVM fitted to the data, T 1 consistently outperformed R1 with a test log likelihood
ratio of 127±30 (mean ± sem) across 10 partitions of the data.

140 Manifold GPLVMs

Fitting T 1-mGPLVM to the binned spike data, we found that the inferred latent state was
highly correlated with the true head direction (Figure B.1b). However, in contrast to the data
considered in Section 3.2.3 and Section 3.2.3, this mouse dataset contains neurons with more
heterogeneous baseline activities and tuning properties. This is reflected in the learned GP
parameters, which converge to small kernel length scales for neurons that contribute to the
heading representation (Figure B.1c, ‘tuned’) and large length scales for those that do not
(Figure B.1c, ‘not tuned’). Finally, since mGPLVM does not require knowledge of behaviour,
we also fitted mGPLVM to data recorded from the same neurons during a period of rapid
eye movement (REM) sleep. Here we found that the representation of subconscious heading
during REM sleep was similar to the representation of heading when the animal was awake
after matching the offset between the two sets of tuning curves (Figure B.1d), similar to results
by Peyrache et al. (2015). However, their analyses relied on recordings from two separate brain
regions to align the activity from neurons in ADn to a subconscious head direction decoded
from the postsubiculum and vice versa. In contrast, mGPLVM allows for fully unsupervised
Bayesian analyses across both wake and sleep using recordings from a single brain area.

Priors on manifolds

For all manifolds, we use priors that factorize over conditions, pM({gj}) = ∏
j p

M(gj). As
described in Section 3.2.2, we use a Gaussian prior pRn(g) =N (g;0,In) over latent states in
Rn, and uniform priors for the spheres, tori, and SO(3). These uniform priors have a density
which is the inverse volume of the manifold:

pSn(g) =

 2π
n+1

2

Γ(n+1
2)

−1

(B.1)

pT n(g) = [2π]−n (B.2)

pSO(3)(g) =

 2π
4
2

2Γ(4
2)

−1

. (B.3)

Note that the volume of Sn is the surface area of the n-sphere, and the volume of SO(3) is half
the volume of S3.

Lie groups and their exponential maps

For simplicity of exposition, we have skimmed over the details of how the ‘capitalized’ Exponen-
tial map ExpG : Rn→G is defined in Section 3.2.2, particularly in relation to the group’s Lie
algebra g. Here we make this connection more explicit. As described in the main text, the Lie

141

algebra g of a group G is a vector space tangent to G at its identity element. The exponential
map expG : g→G maps elements from the Lie algebra to the group, and is conceptually distinct
from the “capitalised” Exponential map defined in Section 3.2.2, which maps from Rn to G.
However, because the Lie algebra is isomorphic to Rn, we have found it convenient in both
our exposition and our implementation to work directly with the pair (Rn,ExpG), instead of
(g,expG). To expand on the connection between the two, note that we can define as in Sola et al.
(2018) the isomorphism Hat : Rn→ g, which maps every element in Rn to a distinct element in
the Lie algebra g. Therefore, ExpG : Rn→G is in fact the composition expG ◦Hat.

Manifold-specific parameterizations

Here we provide some further justification for the forms of q̃φ(g̃) provided in Equations 3.32
and 3.33 as well as the exponential maps which are used to derive these densities and are
needed for optimization in Equation 3.25. For both Tn and SO(3), we use Equation 3.22 from
Falorsi et al. (2019), which we repeat here for reference:

q̃φ(g̃) =
∑

xxx∈Rn : ExpG(xxx)=g̃

rφ(xxx)|JJJ(xxx)|−1. (B.4)

In what follows, we will use ggg to indicate a vector representation of group element g to avoid
conflicts of notation.

Note that the expressions in this section largely follow Falorsi et al. (2019), but we re-write
them in a different basis for ease of computational implementation.

Tori

The n-Torus Tn is the direct product of n circles, such that we can parameterize members of this
group as ggg ∈ Rn whose elements are all angles between 0 and 2π. Note that this is equivalent
to the parameterization in Equation 3.30, except that here we denote an element on the circle
by its angle, while in Equation 3.30 we denote it by a unit 2-vector for notational consistency
with the other kernels. Because 1-dimensional rotations are commutative, the parameterization
of the torus as a list of angles allows us to perform group operations by simple addition modulo
2π. We therefore slightly abuse notation and write the exponential map ExpT n : Rn→ Tn as
an element-wise modulo operation:

ExpT nxxx= xxxmod 2π. (B.5)

Equation B.5 has inverse Jacobian |JJJ(x)|−1 = 1. Moreover, since ExpT n(xxx) = ExpT n(xxx+2πkkk)
for any integer vector kkk ∈Zn, the change-of-variable formula in Equation B.4 yields the following

142 Manifold GPLVMs

density on Tn:
q̃φ(ExpT nxxx) =

∑
kkk∈Zn

rφ(xxx+2πkkk). (B.6)

For ease of implementation, it is also convenient to rewrite the kernel distance function
Equation 3.30 as

dT n(ggg,ggg′) = 2 ·111n · (1− cos(ggg−ggg′)) (B.7)

where 111n is the n-vector full of ones, and cos(·) is applied element-wise to ggg−ggg′′′.

Special orthogonal group

We use quaternions ggg ∈ R4 to represent elements g ∈ SO(3) as indicated in Equation 3.31. For
a rotation of ϕ radians around axis uuu ∈ R3 with ∥uuu∥= 1,

ggg =
(

cos ϕ2 ,u
uusin ϕ2

)
∈ R4. (B.8)

The exponential map ExpSO(3) : R3→ SO(3) is

ExpSO(3)xxx= (cos∥xxx∥, x̂xxsin∥xxx∥), (B.9)

where x̂xx = xxx/∥xxx∥ and ϕ = 2∥xxx∥ is the angle of rotation. This gives rise to an inverse Jaco-
bian

|JJJ(xxx)|−1 = ϕ2/(2(1− cosϕ)). (B.10)

Using Equation B.4 we get the density on the group

q̃φ(ExpSO(3)xxx) =
∑
k∈Z

[
rφ(xxx+πkx̂xx) 2∥xxx+πkx̂xx∥2

1− cos(2∥xxx+πkx̂xx∥)

]
, (B.11)

where the sum over k stems from the fact that a rotation of ϕ+2kπ around axis x̂xx is equivalent
to a rotation of ϕ around the same axis.

mGPLVM on spheres

In this section, we discuss how to fit mGPLVMs on spheres. We first consider spheres that are
also Lie groups and then discuss a general framework for all n-spheres.

Lie group spheres

We begin by noting that Sn is not a Lie group unless n= 1 or n= 3. We can therefore only
apply the ReLie framework to S1 and S3. S1 is equivalent to T 1 and is most easily treated using

143

Figure B.2 Applying mGPLVM to synthetic data on S2 (top) and S3 (bottom).
Pairwise distances between the variational means {gµ

j } are plotted against the corresponding
pairwise distances between the true latent states {gj} for S2 (top left) and S3 (bottom left). Since
the log likelihood is a function of these pairwise distances through the kernel (Equation 3.29),
this illustrates that mGPLVM recovers the important features of the true latents. Inferred
(black) and true (green) latent states in spherical coordinates for S2 (top middle) and S3

(bottom middle and bottom right). For S2, we are showing the latent states in spherical
polar coordinates ggg = (sinθ cosϕ,sinθ sinϕ,cosθ) with θ ∈ [0,π] and ϕ ∈ [0,2π]. For S3, we use
hyperspherical coordinates ggg = (sinψ sinθ cosϕ,sinψ sinθ sinϕ,sinθ cosψ,cosθ) with θ,ψ ∈ [0,π]
and ϕ ∈ [0,2π].

the torus formalism above. For S3, we note that SO(3) is simply S3 with double coverage. This
is because quaternions ggg and −ggg represent the same element of SO(3), while they correspond
to distinct elements of S3. The Jacobian and exponential maps of S3 are therefore identical to
those of SO(3). The expression for the density on S3 also mirrors Equation B.11 except that
the sum is over xxx+2πkx̂xx instead of xxx+πkx̂xx:

q̃φ(ExpS3xxx) =
∑
k∈Z

[
rφ(xxx+2πkx̂xx) 2∥xxx+2πkx̂xx∥2

1− cos(2∥xxx+2πkx̂xx∥)

]
. (B.12)

We demonstrate S3-mGPLVM on synthetic data from S3 in Figure B.2 (bottom).

non-Lie group spheres

The ReLie framework does not directly apply to distributions defined on non-Lie groups.
Nevertheless, we can still apply mGPLVM to an n-sphere embedded in Rn+1 by taking each
latent variational distribution qφj

to be a von Mises-Fisher distribution (VMF), whose entropy
is known analytically. Parameterizing group element g ∈ Sn by a unit-norm vector ggg ∈ Rn+1,

144 Manifold GPLVMs

∥ggg∥= 1, this density is given by:

qφ(ggg;gggµ,κ) = κn/2−1

(2π)n/2In/2−1(κ)
exp(κgggµ ·ggg), (B.13)

where · denotes the dot product. Here, Iv is the modified Bessel function of the first kind
at order v, gggµ is the mean direction of the distribution on the hypersphere, and κ ≥ 0 is a
concentration parameter – the larger κ, the more concentrated the distribution around gggµ.

Using a VMF distribution as the latent distribution, we can easily evaluate the ELBO in
Equation 3.19 because (i) there are well-known algorithms for sampling from the distribution
using rejection-sampling (Ulrich, 1984), and (ii) both the entropy term H(qφ) and its gradient
can be derived analytically (Davidson et al., 2018). For details of how to differentiate through
rejection sampling, we refer to Naesseth et al. (2016) and Davidson et al. (2018).

In the following, we provide details for applying mGPLVM to S2, for which we do not need to
use rejection sampling and instead use inverse transform sampling (Jakob, 2012). For S2, the
VMF distribution simplifies to (Straub, 2017)

qφ(ggg;gggµ,κ) = κ

2π(exp(κ)− exp(−κ)) exp(κgggµ ·ggg), (B.14)

and its entropy is

H(qφ) =−
∫

S2
qφ(ggg;gggµ,κ) logqφ(ggg;gggµ,κ)dggg (B.15)

=− log
(

κ

4π sinhκ

)
− κ

tanhκ +1. (B.16)

These equations allow us to apply mGPLVM to S2 by optimizing the ELBO as described in
the main text; this is illustrated for synthetic data on S2 in Figure B.2 (top).

Posterior over tuning curves

We can derive the posterior over tuning curves in Equation 3.26 as follows:

p(fff⋆
i |YYY ,G⋆) =

∫
p(fff⋆

i ,G|G⋆,YYY) dG (B.17)

=
∫
p(fff⋆

i |G⋆,{G,YYY })p(G|YYY) dG (B.18)

≈
∫
p(fff⋆

i |G⋆,{G,YYY })qφ(G) dG (B.19)

≈ 1
K

K∑
k=1

p(fff⋆
i |G⋆,{Gk,YYY }) (B.20)

145

Here, each Gk is a set of M latents (one for each of the M conditions in the data YYY) sampled
from the variational posterior qφ(G). The standard deviation around the mean tuning curves
in all figures are estimated from 1000 independent samples from this posterior, with each
draw involving the following two steps: (i) draw a sample Gk from qφ and (ii) conditioned
on this sample, draw from the predictive distribution p(fff⋆

i |G⋆,{Gk,YYY }). Together, these
two steps correspond to a single draw from the posterior. Note that we make a variational
sparse GP approximation (Section 3.2.2) and therefore approximate the predictive distribution
p(fff⋆

i |G⋆,{Gk,YYY }) as described in Titsias (2009).

Alignment for visualization

The mGPLVM solutions for non-Euclidean spaces are degenerate because the ELBO depends
on the sampled latents through (i) their uniform prior density, (ii) their entropy, and (iii) the
GP marginal likelihood, and all three quantities are invariant to transformations that preserve
pairwise distances. For example, the application of a common group element g to all the
variational means leaves pairwise distances unaffected and therefore does not affect the ELBO.
Additionally, pairwise distances are invariant to reflections along any axis of the coordinate
system we have chosen to represent each group. Therefore, to plot comparisons between true and
fitted latents, we use numerical optimization to find a single distance-preserving transformation
that minimizes the average geodesic distance between the variational means {gµ

j } and the true
latents {gj}.

For the n-dimensional torus (Figures 3.6 and 3.7) which we parameterize as

ggg ∈ {(g1, · · · ,gn);∀k : gk ∈ [0,2π]},

the distance metric depends on cos(gk−g′
k) and is invariant to any translation and reflection of

all latents along each dimension

gk→ (αkgk +βk) mod 2π

where αk ∈ {1,−1} and βk ∈ [0,2π]. We optimize discretely over the {αk} by trying every
possible combination, and continuously over βk for each combination of {αk}.

In the case of S2, S3 and SO(3) (Figures B.2 and 3.7), the distance metrics are invariant to
unitary transformations ggg→RRRggg where RRRRRRT =RRRTRRR= III for the parameterizations used in this
work. For visualization of these groups, we align the inferred latents with the true latents by
optimizing over RRR on the manifold of orthogonal matrices.

146 Manifold GPLVMs

Figure B.3 Automatic relevance determination (ARD) in T 2-mGPLVM. A T 2 model
with ARD was fitted to the T 1 data in Figure 3.6. (a) Length scales along each of the two
dimensions for each neuron. (b) Posterior variational distributions. Shading indicates ±1 s.t.d.
around the posterior mean in each dimension. (c) Variational mean plotted against the true
latent state for each dimension.

Automatic relevance determination

As we mention in Section 3.2.4, it is possible to exploit automatic relevance determination
(ARD) for automatic selection of the dimensionality of groups with additive distance metrics
such as the Tn-distance in Equation B.7. While we have not investigated this in detail, we
illustrate the idea here on a simple example. We consider the same synthetic data as in
Figure 3.6 and fit a T 2-mGPLVM with a kernel on T 2 that has separate lengthscales ℓ1 and ℓ2
for each dimension:

kT 2
ARD

(ggg,ggg′) = α2 exp
(cos(g1−g′

1)−1
ℓ21

)
exp

(cos(g2−g′
2)−1

ℓ22

)
. (B.21)

Additionally, we assume the variational distribution to factorize across latent dimensions:

qφj
(·) = qφ1

j
(·)qφ2

j
(·), (B.22)

such that their entropies add up to the total entropy:

H(qφj
) =H(qφ1

j
)+H(qφ2

j
). (B.23)

This corresponds to assuming that each variational covariance matrix Σj (Section 3.2.2) is
diagonal.

When fitting this model, we find that one length parameter goes to large values while the
other remains on the order of the size of the space (Figure B.3a; note that dT 1 ∈ [0,4]). This
indicates that neurons are only tuned to one of the two torus dimensions. Additionally, posterior

147

variances become very large in the non-contributing dimension, i.e. the data does not constrain
the other angular dimension (Figure B.3b). This further indicates that the model has effectively
shrunk from a 2-torus to a single circle. We note that the entropy of the factor in the variational
posterior that corresponds to the discarded dimension becomes log2π as the variance goes to
infinity in this direction. This exactly offsets the increased complexity penalty of the prior for
T 2 compared to T 1, such that the two models have the same ELBO. The model thus reduces to
a T 1 model, demonstrating how ARD can be exploited to automatically infer the dimensionality
of the latent space.

Direct products of Lie groups

Here, we elaborate slightly on the extension of mGPLVM to direct products of Lie groups,
briefly mentioned in the discussion (Section 3.2.4). Assuming additive distance metrics and
factorized variational distributions, direct product kernels become multiplicative and entropies
become additive – very much as in our illustration of ARD in Appendix B. That is, for a group
product M=M1× . . .×ML, we can write

kM(g,g′) =
∏

l

kMl(g,g′), (B.24)

H(qM
φj

) =
∑

l

H(qMl
φj

). (B.25)

As a simple example, we consider a (T 1×R1)-mGPLVM, which we fit to the Drosophila data
from Section 3.2.3. Here we find that the T 1 dimension of the group product, which we denote
by θ(T 1×R1), captures the angular component of the data since it is very strongly correlated
with the latent state θT 1 inferred by the simpler T 1-mGPLVM (Figure B.4a). It is somewhat
harder to predict what features of the data will be captured by the R1 dimension x(T 1×R1) of the
(T 1×R1)-mGPLVM, but we hypothesize that it might capture a global temporal modulation of
the neural activity. We therefore plot the mean instantaneous activity ȳ across neurons against
x(T 1×R1) and find that these quantities are indeed positively correlated (Figure B.4b). This
exemplifies how an mGPLVM on a direct product of groups can capture qualitatively different
components of the data by combining representations with different topologies.

This direct product model is very closely related to the ARD model in Appendix B, and
the two can also be combined in a direct product of ARD kernels. For example, we can
imagine constructing a (Tn×Rn) direct product ARD kernel, which automatically selects the
appropriate number of both periodic and scalar dimensions that best, and most parsimoniously,
explains the data.

148 Manifold GPLVMs

Figure B.4 (T 1×R1)-mGPLVM. (a) Latent
states inferred by T 1-mGPLVM (Figure 3.8a)
against the periodic coordinate of a (T 1 ×
R1)-mGPLVM fitted to the Drosophila data.
(b) Momentary average population activity ȳt

against the scalar Euclidean component of the
(T 1×R1) latent representation.

Implementation

Scaling As mentioned in Section 3.2.2, approximating the GP likelihood term Eqφ
[logp(YYY |{gj})]

in the mGPLVM ELBO scales as O(m2MNK) with m inducing points, M latent states, N neu-
rons, and K Monte Carlo samples. Estimating the entropy term is O(MKd) for a d-dimensional
Euclidean latent space, O(MK(2kmax +1)d) for a d-dimensional torus, and O(MK(2kmax +1))
for SO(3) and S3, where kmax is the maximum value of k used in Equation 3.22. For all
manifolds considered in this work, we can compute a closed-form Exp(·) while for general
matrix Lie groups, approximating Exp as a power series is O(d3) (Falorsi et al., 2019), further
increasing the complexity of mGPLVM for such groups.

For our manifolds of interest, computing the likelihood term tends to be the main computational
bottleneck, although the entropy term can become prohibitive for high-dimensional periodic
latents (Rezende et al., 2020). When computing Eqφ

[logp(YYY |{gj})], most of the complexity is
due to inverting NK matrices of size (Mm2)× (Mm2), which can be performed in parallel for
each Monte Carlo sample and neuron. Using PyTorch for parallelization across neurons and
MC samples, we can train T 1-mGPLVM with N = 300 and M = 1000 in ∼100 seconds on an
NVIDIA GeForce RTX 2080 GPU with 8GB RAM.

Initialization For all simulations, we initialized the system with variational means at the
identity element of the manifold, but with large variational variances to reflect the lack of prior
information about the true latent states. Inducing points were initialized according to the prior
on each manifold (Equation 3.15). To avoid variational distributions collapsing to the uniform
distribution early during learning, we ran a preliminary ‘warm up’ optimization phase during
which some of the parameters were held fixed. Specifically, we fixed the variational covariance
matrices as well as the kernel variance parameters (α in Equation 3.27), and prioritized a better
data fit by setting the entropy term to zero in Equation 3.19. Learning proceeded as normal
thereafter.

Entropy approximation When evaluating Equation 3.22, we used values of kmax = 3 for
the tori and S3 as in Falorsi et al. (2019) and kmax = 5 for SO(3) since the sum takes steps of

149

π instead of 2π. In theory, the finite kmax can lead to an overestimation of the ELBO for large
variational uncertainties, as q̃ is systematically underestimated, leading to overestimation of
the entropy. To mitigate this, we capped the approximate entropy for non-Euclidean manifolds
at the maximum entropy corresponding to a uniform distribution on the manifold.

Code A python package implementing mGPLVM can be found at https://github.com/
tachukao/mgplvm-pytorch.

https://github.com/tachukao/mgplvm-pytorch
https://github.com/tachukao/mgplvm-pytorch

Appendix C

Natural continual learning

Derivation of the NCL learning rule

In this section, we provide further details of how the NCL learning rule in Section 4.1.2 is
derived and also provide an alternative derivation of the algorithm.

NCL learning rule As discussed in Section 4.1.2, we derive NCL as the solution of a trust
region optimization problem. That is, we maximize the posterior loss Lk(θ) within a region of
radius r centered around θ with a distance metric of the form d(θ,θ+ δδδ) =

√
δδδ⊤ΛΛΛk−1δδδ/2. This

distance metric was chosen to take into account the curvature of the prior via its precision
matrix ΛΛΛk−1 and encourage parameter updates that do not affect performance on previous
tasks. Formally, we solve the optimization problem

δδδ = argmin
δδδ
Lk(θ)+∇θLk(θ)⊤δδδ subject to 1

2δ
δδ⊤ΛΛΛk−1δδδ ≤ r2, (C.1)

where Lk(θ+ δδδ)≈ Lk(θ) +∇θLk(θ)⊤δδδ is a first-order approximation to the updated Laplace
objective. Here we recall from Equation 2.31 that

Lk(θ) = ℓk(θ)− 1
2(θ−µµµk−1)T ΛΛΛk−1(θ−µµµk−1) (C.2)

from which we get
∇θLk(θ)⊤δδδ =∇θℓk(θ)⊤δδδ− (θ−µµµk−1)⊤ΛΛΛk−1δδδ (C.3)

The optimization in Equation C.1 is carried out by introducing a Lagrange multiplier η to
construct a Lagrangian L̃:

L̃(δδδ,η) = Lk(θ)+∇θℓk(θ)⊤δδδ− (θ−µµµk−1)⊤ΛΛΛk−1δδδ+η(r2− 1
2δ
δδ⊤ΛΛΛk−1δδδ). (C.4)

We then take the derivative of L̃ w.r.t. δδδ and set it to zero:

∇δδδL̃(δδδ,η) =∇θℓk(θ)−ΛΛΛk−1(θ−µµµk−1)−ηΛΛΛk−1δδδ
′ = 0. (C.5)

152 Natural continual learning

Rearranging this equation gives

δδδ = 1
η

[
ΛΛΛ−1

k−1∇θℓk(θ)− (θ−µµµk−1),
]
. (C.6)

where η itself depends on r2 implicitly. Finally we define a learning rate parameter γ = 1/η
and arrive at the NCL learning rule:

θ← θ+γ
[
ΛΛΛ−1

k−1∇θℓk(θ)− (θθθ−µµµk−1)
]
. (C.7)

Alternative derivation Here, we present an alternative derivation of the NCL learning rule.
In this formulation, we seek to update the parameters of our model on task k by maximizing
Lk(θ) subject to a constraint on the allowed change in the prior term. To find our parameter
updates δδδ, we again solve a constrained optimization problem:

δδδ = argmin
δδδ
Lk(θ)+∇θLk(θ)⊤δδδ such that C(δδδ)≤ r2. (C.8)

Here we define C(δδδ) as the approximate change in log probability under the prior

C(δδδ) = (θ+ δδδ−µµµk−1)⊤ΛΛΛk−1(θ+ δδδ−µµµk−1)− (θ−µµµk−1)⊤ΛΛΛk−1(θ−µµµk−1). (C.9)

Following a similar derivation to above, we find the solution to this optimization problem
as

ηδδδ = ΛΛΛ−1
k−1∇θLk(θ)−η(θ−µµµk−1) = ΛΛΛ−1

k−1∇θℓk(θ)− (1+η)(θ−µµµk−1) (C.10)

for some Lagrange multiplier η. This gives rise to the update rule

θ← θ+γ
[
ΛΛΛ−1

k−1∇θℓk(θ)−λ(θ−µµµk−1)
]

(C.11)

for a learning rate parameter γ and some choice of the parameter λ that depends on both η and
γ. We recover the learning rule derived in Section 4.1.2 with the choice of λ= 1. In practice, λ
can also be treated as a hyperparameter to be optimized.

Task details

Split MNIST The split MNIST benchmark involves 5 tasks, each corresponding to the
pairwise classification of two digits. The 10 digits of the MNIST dataset are randomly divided
over the 5 tasks (i.e., for each random seed, this division can be different). During the
incremental training protocol, these tasks are visited one after the other, followed by testing

153

on all tasks. The original 28×28 pixel grey-scale images and the standard train/test-split are
used, giving 60,000 training (∼6,000 per digit) and 10,000 test images (∼1,000 per digit).

Split CIFAR-100 The split CIFAR-100 benchmark consists of 10 tasks, with each task
corresponding to a ten-way classification problem. The 100 classes of the CIFAR-100 dataset
are randomly divided over the 10 tasks. Each network is trained on these tasks one after the
other followed by testing on all tasks. The 32×32 pixel RGB-colour images are normalised
by z-scoring each channel (using means and standard deviations calculated over the training
set). We use the standard train/test-split, giving 500 training and 100 test images for each
class.

Stimulus-response tasks Here, we provide a brief overview of the six stimulus-response
(SR) tasks. Detailed descriptions of the stimulus-response tasks used in this work can be found
in the appendix of Yang et al. (2019). All tasks are characterized by a stimulus period and
a response period, and some tasks include an additional delay period between the two. The
duration of the stimulus and delay periods are variable across trials and drawn uniformly at
random within an allowed range. During the stimulus period, the input to the network takes the
form of xxx= (cosθin,sinθin), where θin ∈ [0,2π] is some stimulus drawn uniformly at random for
each trial. An additional tonic input is provided to the network, which indicates the identity of
the task using a one-hot encoding. A constant input to a ‘fixation channel’ during the stimulus
and delay periods signifies that the network output should be 0 in the response channels and
1 in a ‘fixation channel’. During the response period, the fixation input is removed and the
output should be 0 in the fixation channel. The target output in the response channels takes
the form yyy = (cosθout,sinθout) where θout is some target output direction described for each
task below:

• task 1 (fdgo) During this task θout = θin and there is no delay period.

• task 2 (fdanti) During this task θout = π+θin and there is no delay period.

• task 3 (delaygo) During this task θout = θin and there is a delay period separating the
stimulus and response periods.

• task 4 (delayanti) During this task θout = π+θin and there is a delay period separating
the stimulus and response periods.

• task 5 (dm1) During this task, two stimuli are drawn from [0,2π] with different input
magnitudes such that xxx = (m1 cosθ1 +m2 cosθ2,m1 sinθ1 +m2 sinθ2). θout is then the
element in (θ1,θ2) corresponding to the largest m.

• task 6 (dm2) As in ‘dm1’, but where the input is now provided through a separate
input channel.

154 Natural continual learning

The loss for each task was computed as a mean squared error from the target output.

SMNIST For this task set, we use the stroke MNIST dataset created by de Jong (2016).
This consists of a series of digits, each of which is represented as a sequence of vectors {xxxt ∈R4}.
The first two columns take values in [−1,0,1] and indicate the discretized displacement in the x
and y direction at each time step. The last two columns are used for special ‘end-of-line’ inputs
when the virtual pen is lifted from the paper for a new stroke to start, and an ‘end-of-digit’
input when the digit is finished. See de Jong (2016) for further details about how the dataset
was generated and formatted. In addition to the standard digits 0-9, we include two additional
sets of digits:

• the digits 0-9 where the x and y directions have been swapped (i.e. the first two elements
of xxxt are swapped),

• the digits 0-9 where the x and y directions have been inverted (i.e. the first two elements
of xxxt are negated).

Furthermore, we omitted the initial entry of each digit corresponding to the ‘start’ location to
increase task difficulty. We turned this dataset into a continual learning task by constructing
five binary classification tasks for each set of digits: {[2,3], [4,5], [1,7], [8,9], [0,6]}. Note that
we have swapped the ‘1’ and ‘6’ from a standard split MNIST task to avoid including the 0
vs 1 classification task, which we found to be too easy. For each trial, a digit was sampled
at random from the corresponding dataset, and xxxt was provided as an input to the network
at each time step, corrupted by Gaussian noise with σ = 1. After the ‘end-of-digit’ input, a
response period with a duration of 5 time steps followed. During this response period only, a
cross-entropy loss was applied to the output units yyy to train the network. During testing, digits
were sampled from the separate test dataset and classification performance was quantified as
the fraction of digits for which the correct class was assigned the highest probability in the last
timestep of the response period. Task identity was provided to the network, which was used in
the form of a multi-head output layer.

Network architectures

Feedforward network archictecture For split MNIST, all methods are compared using a
fully-connected network with 2 hidden layers containing 400 units with ReLU non-linearities,
followed by a softmax output layer.

For split CIFAR-100, the network consists of 5 pre-trained convolutional layers, 2 fully-connected
layers with 2000 ReLU units each, and a softmax output layer. The architecture of the
convolutional layers and their pre-training protocol on the CIFAR-10 dataset are described
by van de Ven et al. (2020). The only difference is that here we pre-train a new set of

155

convolutional layers for each random seed, while van de Ven et al. (2020) used the same set of
pre-trained convolutional layers for all random seeds. For all compared methods, the pre-trained
convolutional layers are frozen during the incremental training protocol.

The softmax output layer of the feedforward networks is treated differently depending on the
continual learning setting (van de Ven and Tolias, 2019). In the task-incremental learning
setting, there is a separate output layer for each task and only the output layer of the task
under consideration is used at any given time (i.e., a multi-head output layer). In the domain-
incremental learning setting, there is a single output layer that is shared between all tasks. In
the class-incremental learning setting, there is one large output layer that spans all tasks and
contains a separate output unit for each class.

Recurrent network architecture The dynamics of the RNN used in Section 4.1.3 can be
described by the following equations:

hhht =HHHrrrt−1 +GGGxxxt + ξξξt =WWWzzzt + ξξξt (C.12)
yyyt ∼ p(yyyt|CCCrrrt) (C.13)

where we define rrrt = φ(hhht), zzzt = (rrr⊤
t−1,xxx

⊤
t)⊤, WWW = (HHH⊤,GGG⊤)⊤, and time is indexed by t. Here,

rrr ∈RNrec×1 are the network activations, xxx ∈Rnin×1 are the inputs, yyy ∈Rnout×1 are the network
outputs, and we refer to WWWzzzt as the ‘recurrent inputs’ to the network. The noise model
p(yyyt|CCCrrrt) may be a Gaussian distribution for a regression task or a categorical distribution for
a classification task, and φ(hhh) is a nonlinearity that is applied to hhh element-wise (in this work
the ReLU function). The parameters of the RNN are given by θ = (WWW,CCC). The process noise
{ξξξt} are zero-mean Gaussian random variables with covariance matrices ΣΣΣξξξ

t . In this model,
the log-likelihood of observing a sequence of outputs yyy1, . . . ,yyyT given inputs xxx1, . . . ,xxxT and
ξξξ1, . . . , ξξξT is given by

ℓ(θ) = logpθ({yyy}|{xxx},{ξξξ}) = logp({yyy}|{CCCrrr}), (C.14)

where p(yyy|CCCrrr) may be a Gaussian distribution for a regression task or a categorical distribution
for a classification task.

KFAC approximation to the Fisher matrix

For all experiments in this work, we make a Kronecker-factored approximation to the FIM of each
task k in Equation 2.33. Concretely, we use the block-wise Kronecker-factored approximation
to the FIM proposed in Section 3 of Martens and Grosse (2015) for feedforward neural networks.
For recurrent neural networks, we use the approximation presented in Section 3.4 of Martens

156 Natural continual learning

et al. (2018). Both approximations allow us to write the FIM on task k as the Kronecker product
FFF k ≈ ÂAAk⊗ ĜGGk. For completeness, we derive the approximation for RNNs below. We refer the
readers to Martens and Grosse (2015) for details on derivations for feedforward networks.

KFAC approximation for RNNs Recall from Appendix C that the log likelihood of
observing a sequence of outputs yyy1, . . . ,yyyT given inputs xxx1, . . . ,xxxT and ξξξ1, . . . , ξξξT is

ℓ(WWW,CCC) =
T∑

t=1
logp(yyyt|CCCrrrt), (C.15)

where rrrt is completely determined by the dynamics of the network and the inputs. With a
slight abuse of notation, we use xxx to denote both ∂ℓ/∂xxx for vectors xxx and ∂ℓ/∂vec(XXX) for
matrices XXX. In this section, it should be clear given the context whether xxx is representing the
gradient of L with respect to a vector or a vectorized matrix. Using these notations, we can
write the gradient of L with respect to vec(WWW) as :

www =
T∑

t=1
hhht

∂hhht

∂vec(WWW) =
T∑

t=1
hhhtzzz

⊤
t =

T∑
t=1

zzzt⊗hhht (C.16)

which can be easily derived fom the backpropagation through time (BPTT) algorithm and the
definition of a Kronecker product. Using this expression for www, we can write the FIM of WWW
as:

FFFWWW = E{(ξξξ,xxx,yyy)}∼M
[
wwwwww⊤

]
(C.17)

= E

(T∑
t=1

zzzt⊗hhht

)(
T∑

s=1
zzzs⊗hhhs

)⊤ (C.18)

=
T∑

t=1

T∑
s=1

E
[(
zzztzzz

⊤
s

)
⊗
(
hhhthhh

⊤
s

)]
. (C.19)

Here the expectations are taken with respect to the model distribution. Unfortunately, comput-
ing FFFWWW can be prohibitively expensive. First, the number of computations scales quadratically
with the length of the input sequence T . Second, for networks of dimension n, there are n4

entries in the Fisher matrix which can therefore be too large to store in memory, let alone
perform any useful computations with it. For this reason, we follow Martens et al. (2018)
and make the following three assumptions in order to derive a tractable Kronecker-factored
approximation to the Fisher. The first assumption we make is that the input and recurrent

157

activty zzzt is uncorrelated with the adjoint activations hhht:

FFFWWW ≈
T∑

t=1

T∑
s=1

E
[
zzztzzz

⊤
s

]
⊗E{(ξξξ,xxx,yyy)}∼M

[
hhhthhh

⊤
s

]
. (C.20)

Note that this approximation is exact when the network dynamics are linear (i.e., φ(xxx) = xxx). The
second assumption that we make is that both the forward activity zzzt and adjoint activity hhht are
temporally homogeneous. That is, the statistical relationship between zzzt and zzzs only depends
on the difference τ = s− t, and similarly for that between hhht and hhhs. Defining Aτ = E

[
zzzszzz

⊤
s+τ

]
and similarly Gτ = E

[
hhhshhh

⊤
s+τ

]
, we have A−τ =A⊤

τ and G−τ = Gτ . Using these expressions, we
can further approximate the Fisher as:

FFFWWW ≈
T∑

τ=−T

(T −|τ |)Aτ ⊗Gτ . (C.21)

The third and final approximation we make is that Aτ ≈ 0 and Gτ ≈ 0 for τ ̸= 0. In other words,
we assume the forward activity zzzt and adjoint activity hhht are approximately indendent across
time. This gives the final expression:

FFFWWW ≈ E [T] E
[
zzzzzz⊤

]
⊗E

[
hhhhhh

⊤]= ÂAAWWW ⊗ ĜGGWWW , (C.22)

where we have also taken an expectation over the sequence length T to account for variable
sequence lengths in the data. Following a similar derivation, we can approximate the Fisher of
CCC as:

FFFCCC ≈ E [T] E
[
rrrrrr⊤

]
⊗E

[
yyyyyy⊤

]
= ÂAACCC ⊗ ĜGGCCC . (C.23)

158 Natural continual learning

Implementation

Algorithm 2: NCL with momentum
1 input: f (network), {Dk}Kk=1, α, pw (prior), B (batch size), γ (learning rate), θ0, ρ
2 initialize: AAAθ← pwIII, GGGθ← pwIII,
3 initialize: θ1← θ0, initialize: MMM θ← zeros_like(θ0), // Gradient momentum
4 for k = 1 . . .K do
5 ÃAA,G̃GG← nearest_kf_sum(AAAθ⊗GGGθ,αIII⊗αIII)
6 PPPL← G̃GG

−1

7 PPPR← ÃAA
−1

8 while not converged do
9 {xxx(i),yyy(i)}Bi=1 ∼Dk // Input and target output

10 for i= 1, . . . ,B do
11 ŷyy(i) = f(xxx(i),θk) // Empirical output

12 ℓ=∑B
i logp(yyy(i)|ŷyy(i))/B // Loss

13

14 % Build up momentum
15 MMM θ← ρMMM θ +∇θℓ+GGGθ(θk−θk−1)AAAθ

16

17 % Update model parameters
18 θk← θk−γp2

w PPPL MMM θPPPR

19 % Update Fisher matrix components
20 Compute ÂAAk and ĜGGk

21 AAAθ,GGGθ← nearest_kf_sum(AAAθ⊗GGGθ, ÂAAk⊗ ĜGGk)

In this section we discuss various implementation details for NCL. Algorithm 2 provides an
overview of the algorithm in the form of pseudocode. For numerical stability, we add α2III to
the precision matrix ΛΛΛk−1 before computing the projection matrices PPPL and PPPR. In general,
we set the prior over the parameters θ when learning the first task as p(θ) =N (000;p−2

w III).

Feedforward networks By default, we set p−2
w to be approximately the number of samples

that the learner sees in each task, corresponding to a unit Gaussian prior before normalizing
our precision matrices by the amount of data seen in each task (here, p−2

w = 12000 for split
MNIST and p−2

w = 5000 for split CIFAR-100). We also consider hyperparameter optimizations
over p−2

w by trying different values on a log scale from 102 to 1011 with a random seed not
included during the evaluation. We use α= 10−10 and λ= 1 for all experiments.

159

For all experiments with feedforward networks, we use a batch size of 256 and we train for
either 2000 iterations per task (split MNIST) or 5000 iterations per task (split CIFAR-100).
For NCL and OWM, we train with momentum (ρ= 0.9) and a learning rate of γ = 0.05. For
SI, EWC and KFAC, we train using the Adam optimizer (β1 = 0.9, β2 = 0.999) with learning
rate of γ = 0.001 (split MNIST) or γ = 0.0001 (split CIFAR-100). All models were trained on
single GPUs with training times of 10-100 minutes.

RNNs We again set p−2
w approximately equal to the number of samples that the learner sees

in each task, corresponding to a unit Gaussian prior before normalizing our precision matrices
by the amount of data seen in each task (here, p−2

w = 106 for the stimulus-response task and
p−2

w = 6000 for SMNIST).

We used momentum (ρ= 0.9) in all our experiments involving NCL, OWM and DOWM, as is
also done in Duncker et al. (2020). We found that the use of momentum greatly speeds up
convergence in practice.

All models were trained on single GPUs with training times of 10-100 minutes depending on
the task set and model size. We used a training batch size of 32 for the stimulus-response tasks
and 256 for the SMNIST tasks. In all cases, we used a test batch size of 2048 for evaluation and
for computing projection and Fisher matrices. We used a learning rate of γ = 0.01 for SMNIST
and γ = 0.005 for the stimulus-response tasks across all projection-based methods. We used
a learning rate of γ = 0.001 for KFAC with the Adam optimizer. All models were trained on
106 data samples per task. A hyperparameter optimization over α for the projection-based
methods and λ for KFAC with Adam is provided in Figure C.6.

Relation to projection-based continual learning

In this section, we further elaborate on the intuition that projection-based continual learning
methods such as Orthogonal Weight Modification (OWM; Zeng et al., 2019) may be viewed as
variants of NCL with particular approximations to the prior Fisher matrix. These approaches
are typically motivated as a way to restrict parameter changes in a neural network that is
learning a new task to subspaces orthogonal to those used in previous tasks.

For example, to solve the continual learning problem in RNNs as described in Appendix C,
Duncker et al. (2020) proposed a projected gradient algorithm (DOWM) that restricts modi-
fications to the recurrent/input weight matrix WWW on task k+1 to column and row spaces of
WWW that are not heavily “used” in the first k tasks. Specifically, they concatenate input and
recurrent activity zzzt across the first k tasks into a matrix ZZZ1:k. They use ZZZ1:k and WWWZZZ1:k as
estimates of the row and column spaces of WWW that are important for the first k tasks. They

160 Natural continual learning

proceed to construct the following projection matrices:

PPP 1:k
z = ZZZ1:k(ZZZ1:kZZZ

⊤
1:k +αIII)−1ZZZ1:k

⊤ (C.24)

≈ kα
(
E
[
zzzzzz⊤

]
+αIII

)−1
(C.25)

PPP 1:k
wz =WWWZZZ1:k(WWWZZZ1:kZZZ

⊤
1:kWWW

⊤ +αIII)−1(WWWZZZ1:k)⊤ (C.26)

≈ kα
(
WWWE

[
zzzzzz⊤

]
WWW⊤ +αIII

)−1
, (C.27)

which are used to derive update rules for WWW as:

vec(∆WWW)∝
(
PPP 1:k

z ⊗PPP 1:k
wz

)
www (C.28)

∝
(
E
[
zzzzzz⊤

]
+αIII

)−1
⊗
(
WWWE

[
zzzzzz⊤

]
WWW⊤ +αIII

)−1
www (C.29)

where www = vec(∇WWW ℓk+1(WWW,CCC)). These projection matrices restrict changes in the row and
column space of WWW to be orthogonal to ZZZ1:k and WWWZZZ1:k respectively. Similar update rules can
be defined for CCC. Zeng et al. (2019) propose a similar projection-based learning rule (OWM) in
feedforward networks, which only restricts changes in the row-space of the weight parameters
(i.e., PPPwz = III).

With a scaled additive approximation to the sum of Kronecker products, the NCL update rule
on task k+1 is given by

vec(∆WWW)∝
(
E
[
zzzzzz⊤

]
+παIII

)−1
⊗
(
E
[
hhhhhh

⊤]+ 1
π
αIII

)−1
www+(vec(WWW k)−vec(WWW)). (C.30)

We see that this NCL update rule looks similar to the OWM and DOWM update steps, and
that they share the same projection matrix in the row-space PPP z when π = 1. The methods
proposed by Duncker et al. (2020) and Zeng et al. (2019) can thus be seen as approximations to
NCL with a Kronecker structured Fisher matrix. However, we also note that OWM and DOWM
do not include the regularization term (vec(WWW k)−vec(WWW)). This implies that while OWM and
DOWM encourage parameter updates along flat directions of the prior, the performance of
these methods may deteriorate in the limit of infinite training duration if a local minimum of
task k is not found in a flat subspace of previous tasks (c.f. Figure 4.1).

To further emphasize the relationship between OWM, DOWM and NCL, we compared the
approximations to the Fisher matrix FFF approx = PPP−1

R ⊗PPP
−1
L implied by the projection matrices

of these methods (Figure C.1). Here we found that OWM and DOWM provided reasonable
approximations to the true Fisher matrix with both Gaussian (Figure C.1) and categorical
(Figure C.2) observation models. This motivates a Bayesian interpretation of these methods
as using an approximate prior precision matrix to project gradients, similar to the derivation
of NCL in Appendix C. Here it is also worth noting that while we use an optimal sum of

161

W

C

0

2

4

6

ctr Fkf FDOWMFOWM

0

1

2

3

ctr Fkf FDOWMFOWM

Exact Fexact KFAC Fkf DOWM FDOWM OWM FOWM

sc
al

e-
in

va
ria

nt
K

L
di

ve
rg

en
ce

sc
al

e-
in

va
ria

nt
K

L
di

ve
rg

en
ce

A B

Figure C.1 Comparison of projection matrices. In a Bayesian framework, we can formalize
what is meant by directions ‘important for previous tasks’ as those that are strongly constrained
by the prior p(θ|D1:k−1). To see how this compares with OWM and DOWM, we considered
the Kronecker-structured precision matrices FFF approx implied by the projection matrices PPPR

and PPPL for each method and related them to the exact Fisher matrix FFF exact in a linear
recurrent network. (A; top) FFF exact (left) for WWW as well as the approximations to FFF exact
provided by our Kronecker-factored approximation (KFAC; FFF kf), DOWM (FFFDOWM), and
OWM (FFFOWM). (B; top) Scale-invariant KL-divergence (Equation C.51) between N (µµµ,FFF−1

exact)
and N (µµµ,FFF−1

approx) for each approximation. Red horizontal line indicates the mean value
obtained from FFF approx =RRRFFF exactRRR

⊤ where RRR is a random rotation matrix (averaged over 500
random samples). (Bottom) Same as (A–B) but for the readout matrix CCC.

Kronecker factors to update the prior precision after each task in NCL, OWM and DOWM
simply sum their Kronecker factors. In the case of OWM, this is in fact an exact approximation
to the sum of the Kronecker products since the right Kronecker factor is in this case a constant
matrix III. For DOWM, summing the individual Kronecker factors does not provide an optimal
approximation to the sum of the Kronecker products, but our results suggest that it is a
fairly reasonable approximation up to a scale factor which can be absorbed into the learning
rate.

Another recent projection-based approach to continual learning developed by Saha et al. (2021)
restricts parameter updates to occur in a subspace of the full parameter space deemed important
for previous tasks. This method, known as ‘Gradient projection memory’ (GPM), is similar to
OWM but with a hard cut-off separating ‘important’ from ‘unimportant’ directions of parameter
space. The important subspace is in this case determined by thresholding the singular values
of the activity matrix ZZZk. GPM can thus be seen as a discretized version of OWM with a
projection matrix constituting a binary approximation to the prior Fisher matrix.

162 Natural continual learning

W

C

W

C

0

2

4

6

ctr Fkf FdiagFdowmFowm

0

2

4

6

ctr Fkf FdiagFdowmFowm

0

2

4

6

ctr Fkf FdiagFdowmFowm

0

2

4

6

8

ctr Fkf FdiagFdowmFowm

Exact Fexact KFAC Fkf Diag Fdiag DOWM FDOWM OWM FOWM

sc
al

e-
in

va
ria

nt
K

L
di

ve
rg

en
ce

sc
al

e-
in

va
ria

nt
K

L
di

ve
rg

en
ce

sc
al

e-
in

va
ria

nt
K

L
di

ve
rg

en
ce

sc
al

e-
in

va
ria

nt
K

L
di

ve
rg

en
ce

A B

C D

Figure C.2 Comparison of Fisher Approximations in a Linear RNN with rotated
Gaussian and categorical likelihoods. (A) Exact and approximations to the Fisher informa-
tion matrix of the recurrent and input weight matrix WWW (left) and the linear readout CCC (bottom)
of a linear recurrent neural network with Gaussian noise and non-diagonal noise covariance
ΣΣΣ. From the left: exact Fisher information matrix FFF exact, Kronecker-Factored approximation
(FFF kf; KFAC), Diagonal (FFF diag), DOWM (FFFDOWM), and OWM (FFFOWM). (B) Scale-invariant
KL-divergence between N (000,FFF−1

exact) and N (000,FFF−1) for FFF ∈ {FFF kf,FFF diag,FFFDOWM,FFFOWM}. Red
horizontal lines indicate the mean value obtained from FFF approx = RRRFFF exactRRR

⊤ where RRR is a
random rotation matrix (averaged over 500 random samples). (C-D) As in (A-B), now for a
categorical noise model p(yyy|CCCrrr) = Cat(softmax(CCCrrr)).

Kronecker-factored approximation to the sums of Kronecker Products

In this section, we consider three different Kronecker-factored approximations to the sum of
two Kronecker products:

XXX⊗YYY ≈ ZZZ =AAA⊗BBB+CCC⊗DDD. (C.31)

In particular, we consider the special case where AAA ∈ Rn×n, BBB ∈ Rm×m, CCC ∈ Rn×n, and
DDD ∈ Rm×m are symmetric positive-definite. ZZZ will not in general be a Kronecker product, but
for computational reasons it is desirable to approximate it as one to avoid computing or storing
a full-sized precision matrix.

163

Scaled additive approximation The first approximation we consider was proposed by
Martens and Grosse (2015). They propose to approximate the sum with

ZZZ ≈ (AAA+πCCC)⊗ (BBB+ 1
π
DDD), (C.32)

where π is a scalar parameter. Using the triangle inequality, Martens and Grosse (2015) derived
an upper-bound to the norm of the approximation error

∥ZZZ− (AAA+πCCC)⊗ (BBB+ 1
π
DDD)∥ (C.33)

= ∥ 1
π
AAA⊗DDD+πCCC⊗BBB∥ (C.34)

≤ 1
π
∥AAA⊗DDD∥+π∥CCC⊗BBB∥ (C.35)

for any norm ∥ · ∥. They then minimize this upper-bound with respect to π to find the optimal
π:

π =
√
∥CCC⊗BBB∥
∥AAA⊗DDD∥

. (C.36)

As in (Martens and Grosse, 2015), we use a trace norm in bounding the approximation error,
and noting that Tr(XXX⊗YYY) = Tr(XXX)Tr(YYY), we can compute the optimal π as:

π =
√

Tr(BBB)Tr(CCC)
Tr(AAA)Tr(DDD) . (C.37)

Minimal mean-squared error The second approximation we consider was originally pro-
posed by van Loan and Pitsianis (1993). In this case, we approximate the sum of Kronecker
products by minimizing a mean squared loss:

XXX,YYY = argmin
XXX,YYY

∥ZZZ−XXX⊗YYY ∥2F (C.38)

= argmin
XXX,YYY

∥R(AAA⊗BBB)+R(CCC⊗DDD)−R(XXX⊗YYY)∥2F (C.39)

= argmin
XXX,YYY

∥vec(AAA)vec(BBB)⊤ +vec(CCC)vec(DDD)⊤−vec(XXX)vec(YYY)⊤∥2F , (C.40)

where R(AAA⊗BBB) = vec(AAA)vec(BBB)⊤ is the rearrangement operator (van Loan and Pitsianis,
1993). The optimization problem thus involves finding the best rank-one approximation to

164 Natural continual learning

a rank-2 matrix. This can be solved efficiently using a singular value decomposition (SVD)
without ever constructing an n2×m2 matrix (see Algorithm 3 for details).

Algorithm 3: Mean-squared error approximation of the sum of Kronecker products
1 input: AAA, BBB, CCC, DDD
2 aaa← vec(AAA), bbb← vec(BBB), ccc← vec(CCC), ddd← vec(DDD) // Vectorize AAA,BBB,CCC,DDD

3 QQQ,_←QR(
[
aaa;ccc
]
) // Orthogonal basis for aaa and ccc in Rn2×2

4 HHH ← (QQQ⊤aaa)bbb⊤ +(QQQ⊤ccc)ddd⊤

5 UUU,sss,VVV ⊤← SVD(HHH)
6 yyy← first column of √sss1VVV

7 xxx← first column of √sss1QQQUUU

8 XXX ← reshape(xxx,(n,n)), YYY ← reshape(yyy,(m,m))

Minimal KL-divergence In this work, we propose an alternative approximation to ZZZ

motivated by the fact that XXX⊗YYY is meant to approximate the precision matrix of the approxi-
mate posterior after learning task k. We thus define two multivariate Gaussian distributions
q(www) =N (www;µµµ,XXX⊗YYY) and p(www) =N (www;µµµ,ZZZ) (note that the mean of these distributions are
found in NCL by gradient-based optimization). We are interested in finding the matrices XXX
and YYY that minimize the KL-divergence between the two distributions

2DKL(q||p) = log |XXX⊗YYY |− log |ZZZ|+Tr(ZZZ(XXX⊗YYY)−1)−d (C.41)
=m log |XXX|+n log |YYY |+Tr(AAAXXX−1⊗BBBYYY −1)+Tr(CCCXXX−1⊗DDDYYY −1)−d (C.42)
=−m log |XXX−1|−n log |YYY −1|+Tr(AAAXXX−1)Tr(BBBYYY −1) (C.43)

+Tr(CCCXXX−1)Tr(DDDYYY −1)−d (C.44)

where d= nm. Differentiating with respect to XXX−1, and YYY −1 and setting the result to zero, we
get

0 = ∂DKL(q||p)
∂XXX−1 = 1

2
[
−mXXX+Tr(BBBYYY −1)AAA+Tr(DDDYYY −1)CCC

]
(C.45)

0 = ∂DKL(q||p)
∂YYY −1 = 1

2
[
−nYYY +Tr(AAAXXX−1)BBB+Tr(CCCXXX−1)DDD

]
. (C.46)

Rearranging these equations, we find the self-consistency equations:

XXX = 1
m

[
Tr(BBBYYY −1)AAA+Tr(DDDYYY −1)CCC

]
(C.47)

YYY = 1
n

[
Tr(AAAXXX−1)BBB+Tr(DDDXXX−1)DDD

]
. (C.48)

This shows that the optimal XXX (YYY) is a linear combination of AAA and CCC (BBB and DDD). It is unclear
whether we can solve for XXX and YYY analytically in Equation C.47 and Equation C.48. However,

165

0.94

0.96

0.98
A random RNN

Pe
ar

so
n

co
rre

la
tio

n

0.0

0.7

1.4

KL
 d

iv
er

g.

1 5 10 15
task number

0.06

0.12

0.18

sc
al

e-
op

tii
m

.
KL

 d
iv

er
g.

0.8

0.9

1.0
B SR

0.0

1.4

2.8

1 2 3 4 5 6
task number

0.0

0.3

0.6

naive sum trace bound KL optimized MSE optimized

0.8

0.9

1.0
C smnist

0.0

0.9

1.8

1 5 10 15
task number

0.0

0.7

1.4

Figure C.3 Comparison of different Kronecker approximations to consecutive sums
of two Kronecker products. (A) Comparison of approximations for Fisher matrices com-
puted from random RNNs with dynamics as described in Section 4.1.3. All similarity/distance
measures are computed between the true sum ∑k

k′ FFF k′ and each iterative approximation. (B) As
in (A) for the Fisher matrices from the stimulus-response tasks, here trained with 50 hidden
units to make the computation of the true sum tractable. (C) As in (A) for the Fisher matrices
from the SMNIST tasks. Note that the KL divergence for the MSE-minimizing approximation
is not shown in panel 2 as it is an order of magnitude larger than the alternatives and thus
does not fit on the axis.

we can find XXX and YYY numerically by iteratively applying the following update rules:

XXXk+1 = (1−β)XXXk + β

m

(
Tr(BBBYYY −1

k)AAA+Tr(DDDYYY −1
k)CCC

)
(C.49)

YYY k+1 = (1−β)YYY k + β

n

(
Tr(AAAXXX−1

k)CCC+Tr(CCCXXX−1
k)DDD

)
(C.50)

for initial guesses XXX0 and YYY 0. In practice, we initialize using the scaled additive approximation
and find that the algorithm converges with β = 0.3 after tens of iterations.

Comparisons To compare different approximations of the precision matrix to the posterior,
we consider Kronecker structured Fisher matrices from (i) a random RNN model, (ii) the
Fishers learned in the stimulus-response tasks, and (iii) the Fishers learned in the SMNIST
tasks. We then iteratively update ΛΛΛk ≈ ΛΛΛk−1 +FFF k, approximating this sum using each of the
approaches described above as well as a naive unweighted sum of the pairs of Kronecker factors.
We compare these approximations using three different metrics: the correlation with the true

166 Natural continual learning

sum of Kronecker products ∑k
k′ FFF k′ (Figure C.3, top row), the KL divergence from the true sum

(Figure C.3, middle row), and the scale-optimized KL divergence from the true sum (Figure C.3,
bottom row). Here we define the scale-optimized KL divergence as

KLλ[ΛΛΛ1||ΛΛΛ2] = minλKL[λΛΛΛ1||ΛΛΛ2] (C.51)

= 1
2

(
log |Λ

ΛΛ1|
|ΛΛΛ2|

+d log Tr(ΛΛΛ−1
1 ΛΛΛ2)
d

)
, (C.52)

where d is the dimensionality of the precision matrices ΛΛΛ1 and ΛΛΛ2 and we take KL[ΛΛΛ1,ΛΛΛ2] =
DKL(N (000,ΛΛΛ−1

1)||N (000,ΛΛΛ−1
2)). This is a useful measure since a scaling of the approximate prior

does not change the subspaces that are projected out in the weight projection methods but
merely scales the learning rate. By contrast in NCL, having an appropriate scaling is useful for
a consistent Bayesian interpretation.

We find that all the methods yield reasonable correlations and scale-optimized KL divergences
between the true sum of Kronecker products and the approximate sum, although the L2-
optimized approximation tends to have a slightly better correlation and slightly worse scaled
KL (Figure C.3, red). However, the KL-optimized Kronecker sum greatly outperforms the other
methods as quantified by the regular KL divergence and is the method used in this work since
it is relatively cheap to compute and only needs to be computed once per task (Figure C.3,
green).

Further results

Performance with different prior scalings

Here we consider the performance of KFAC and NCL for different values of λ on the stimulus-
response task set with 256 recurrent units. We start by recalling that λ is a parameter that
is used to define a modified Laplace loss function with a rescaling of the prior term (c.f.
Section 4.1.2):

L(λ)
k (θ) = logp(Dk|θ)−λ(θ−µµµk−1)⊤ΛΛΛk−1(θ−µµµk−1). (C.53)

In this context, it is worth noting that KFAC and NCL have the same stationary points when
they share the same value of λ. Despite this, the performance of NCL was robust across different
values of λ (Figure C.4A), while learning was unstable and performance generally poor for
KFAC with small values of λ ∈ [1,10]. However, as we increased λ for KFAC, learning stabilized
and catastrophic forgetting was mitigated (Figure C.4B). A similar pattern was observed for
the SMNIST task set (Figure C.6).

We hypothesize that the improved performance of KFAC for high values of λ is due in part
to the gradient preconditioner of KFAC becoming increasingly similar to NCL’s precondi-

167

10 2

10 1

100

NC
L

(o
ur

s)

A = 1
task 1 task 2 task 3 task 4 task 5 task 6 mean

= 10 = 102 = 103 = 104

10 2

10 1

100

KF
AC

B

10 2

10 1

100

de
co

up
le

d
KF

AC

C

0 100 200
iteration (x1000)

10 2

10 1

100

re
ve

rs
e

de
co

up
le

d D

0 100 200
iteration (x1000)

0 100 200
iteration (x1000)

0 100 200
iteration (x1000)

0 100 200
iteration (x1000)

Figure C.4 Continual learning on SR tasks with different λ. (A) Evolution of the loss
during training for each of the six stimulus-response tasks for NCL with different values of
λ. The performance of NCL is generally robust across different choices of λ until it starts
overfitting too heavily on early tasks. (B) As in (A), now for KFAC with Adam which performs
poorly for small λ. (C) As in (B), now with “decoupled Adam” where we fix λm = 1 for the
gradient estimate and vary λ = λv for the preconditioner. Interestingly, this is sufficient to
overcome the catastrophic forgetting observed for KFAC with λm = λv = 1. The transient
forgetting observed at the beginning of a new task is likely due to the time it takes to gradually
update the preconditioner for the new task as more data is observed. (D) As in (C), now fixing
λv = 1 for the preconditioner and varying λ= λm for the gradient estimate. For higher values
of λm, this performs worse than both KFAC and decoupled KFAC.

tioner ΛΛΛ−1
k−1 as λ increases (Section 4.1.2). To test this hypothesis, we modified the Adam

optimizer (Kingma and Ba, 2014) to use different values of λ when computing the Adam
momentum and preconditioner. Specifically, we computed the momentum and preconditioner
of some scalar parameter θ as:

m(i)← β1m
(i−1) +(1−β1)∇θL(λm) (C.54)

v(i)← β2v
(i−1) +(1−β2)

(
∇θL(λv)

)2
(C.55)

168 Natural continual learning

100 101 102 103 104 105

λ

0

5

10

W

sc
al

e-
in

va
ri

an
t

K
L

100 101 102 103 104 105

λ

C

Figure C.5 Similarity of the Adam preconditioner and diagonal Fisher matrix. Scale-
invariant KL divergence (Equation C.51) between the diagonal of ΛΛΛk−1 and the preconditioner
used by Adam (

√
vvv; Kingma and Ba, 2014) at the end of training on task k. Results are

averaged over the five first stimulus-response tasks, and the figure indicates mean and standard
error across 5 seeds for the state matrix WWW (left) and the output matrix CCC (right).

where L(λ) is defined in Equation C.53 and importantly λm may not be equal to λv. As in
vanilla Adam, we used m and v to update the parameter θ according to the following update
equations at the ith iteration:

m̂(i)←m(i)/(1−βi
1) (C.56)

v̂(i)← v(i)/(1−βi
2) (C.57)

θ(i)← θ(i−1) +γm̂(i)/(
√
v̂(i) + ϵ), (C.58)

where γ is a learning rate, and β1, β2, and ϵ are standard parameters of the Adam optimizer
(see Kingma and Ba, 2014 for further details). Using this modified version of Adam, which we
call “decoupled Adam”, we considered two variants of KFAC: (i) “decoupled KFAC”, where we
fix λm = 1 and vary λv (Figure C.4C), and (ii) “reverse decoupled”, where we fix λv = 1 and vary
λm (Figure C.4D). We found that “decoupled KFAC” performed well for large λv, suggesting
that it is sufficient to overcount the prior in the Adam preconditioner without changing the
gradient estimate (Figure C.4C). “Reverse decoupled” also partly overcame the catastrophic
forgetting for high λm, but performance was worse than for either NCL, vanilla Adam, or
decoupled Adam (Figure C.4D). These results support our hypothesis that the increased
performance of KFAC for high λ is due in part to the changes in the gradient preconditioner.
To further highlight how the preconditioning in Adam relates to the trust region optimization
employed by NCL, we computed the scaled KL divergence between the Adam preconditioner
and the diagonal of the Kronecker-factored prior precision matrix ΛΛΛk−1 at the end of training on
task k. We found that the Adam preconditioner increasingly resembled ΛΛΛk−1, the preconditioner
used by NCL, as λ increased (Figure C.5).

169

In summary, our results suggest that preconditioning with ΛΛΛk−1 in NCL may mitigate the need
to overcount the prior when using weight regularization for continual learning. Additionally,
such preconditioning to encourage parameter updates that retain good performance on previous
tasks also appears to be a major contributing factor to the success of weight regularization with
a high value of λ when using Adam for optimization.

Hyperparameter optimizations

Feedforward networks For the experiments with feedforward networks, we performed
hyperparameter optimizations by searching over the following parameter ranges (all on a log-
scale): c in SI from 10−5 to 108, λ in EWC and KFAC from 10−4 to 1014, α in OWM from 10−12

to 106, and p−2
w in NCL from 102 to 1011. The hyperparameter grid searches were performed

using a random seed not included during the evaluation. The selected hyperparameter values
for each experiment are reported in Table C.1.

Split MNIST Split CIFAR-100
Task Domain Class Task Domain Class

SI (c) 100 105 107 102 103 106

EWC (λ) 108 109 1013 107 105 10−3

KFAC (λ) 1010 105 104 105 103 1010

OWM (α) 10−2 10−5 10−4 10−2 10−2 10−4

NCL (p−2
w) 103 107 109 103 107 108

Table C.1 Selected
hyperparameter
values for all com-
pared methods on
the experiments
with feedforward
networks.

RNNs For the experiments with RNNs, we optimized over the parameter α used to invert
the approximate Fisher matrices in the projection-based methods (NCL, OWM and DOWM)
or over the parameter λ used to scale the importance of the prior for weight regularization
(KFAC).

For KFAC, we found that the performance was very sensitive to the value of λ across all tasks
sets, and in particular that λ= 1 performed poorly. In the projection-based methods, α can
be seen as evening out the learnings rates between directions that are otherwise constrained
by the projection matrices, and indeed standard gradient descent is recovered as α→∞ (on
the Laplace objective for NCL and on ℓk for OWM/DOWM). We found that NCL in general
outperformed the other projection-based methods with less sensitivity to the regularization
parameter α. DOWM was particularly sensitive to α and required a relatively high value of this
parameter to balance its otherwise conservative projection matrices. Here it is also worth noting
that there is an extensive literature on how a parameter equivalent to α can be dynamically
adjusted when doing standard natural gradient descent using the Fisher matrix for the current
loss (see Martens, 2014 for an overview). While this has not been explored in the context of
projection-based continual learning, it could be interesting to combine these projection based

170 Natural continual learning

10 5 10 3 10 110 2

10 1

100
lo

ss
SR

10 5 10 3 10 110 1

100

101
SMNIST

101 103 105

10 1

100

lo
ss

101 103 105
100

2 × 100
3 × 1004 × 100

NCL DOWM OWM KFAC

Figure C.6 Hyperparameter optimization for RNNs. (left) Comparison of the average
loss across tasks on the stimulus-response task set as a function of α for the projection-based
methods (top panel) and as a function of λ for KFAC (bottom panel). Circles and error bars
indicate mean and s.e.m. across 5 random seeds. Horizontal lines indicate the optimal value for
each method. (right) As before, now for the SMNIST task set.

methods with Tikhonov dampening (Tikhonov, 1943) in future work to automatically adjust
α.

We generally report results in the main text and appendix using the optimal hyperparameter
settings for each method unless otherwise noted. However, α= 10−5 was used for both NCL
and Laplace-DOWM in Figure 4.3C to compare the qualitative behavior of the two different
Fisher approximations without the confound of a large learning rate in directions otherwise
deemed “important” by the approximation.

Numerical results of experiments with feedforward networks

To facilitate comparison to our results, here we provide a table with the numerical results
(Table C.2) of the experiments with feedforward networks reported in Figure 4.2 of the main
text.

171

Table C.2 Numerical results for the experiments with feedforward networks, corresponding to
Figure 4.2 in the main text. Reported is the test accuracy (as %, averaged over all tasks) after
training on all tasks. Each experiment was performed either 20 (split MNIST) or 10 (split
CIFAR-100) times with different random seeds, and we report the mean (± standard error)
across seeds.

Split MNIST Split CIFAR-100
Method Task Do-

main
Class Task Do-

main
Class

None 81.58
±1.64

59.47
±1.71

19.88
±0.02

61.43
±0.36

18.42
±0.33

7.71
±0.18

Joint 99.69
±0.02

98.69
±0.04

98.32
±0.05

78.78
±0.25

46.85
±0.51

49.78
±0.21

SI 97.24
±0.55

65.20
±1.48

21.40
±1.30

74.84
±0.39

22.58
±0.37

7.02
±1.04

EWC 98.67
±0.22

63.44
±1.70

20.08
±0.16

75.38
±0.24

19.97
±0.44

7.74
±0.18

KFAC 99.04
±0.10

67.86
±1.33

19.99
±0.04

76.61
±0.23

26.57
±0.66

7.59
±0.17

OWM 99.36
±0.05

87.46
±0.74

80.73
±1.11

77.07
±0.27

28.51
±0.30

29.23
±0.51

NCL (no opt) 99.53
±0.03

84.9 ±1.06 47.49
±0.84

77.88
±0.26

32.81
±0.38

16.63
±0.34

NCL 99.55
±0.03

91.48
±0.64

69.31
±1.65

78.38
±0.27

38.79
±0.24

26.36
±1.09

SMNIST dynamics with DOWM

In this section, we investigate the latent dynamics of a network trained by DOWM with
α= 0.001 (c.f. the analysis in Section 4.1.3 for NCL). Here we found that the task-associated
recurrent dynamics for a given task were more stable after learning the corresponding task than
in networks trained with NCL. Indeed, the DOWM networks exhibited near-zero drift for early
tasks even after learning all 15 tasks (Figure C.7). However, DOWM also learned representations
that were less well-separated after the first 1-2 classification tasks (Figure C.7, bottom) than
those learned by NCL. This is consistent with our results in Section 4.1.3, where DOWM
exhibited high performance on the first task even after learning all 15 tasks, but performed
less well on later tasks (Figure C.7). These results may be explained by the observation that
DOWM tends to overestimate the number of dimensions that are important for learned tasks
(Section 4.1.3) and thus projects out too many dimensions in the parameter updates when
learning new tasks.

In the context of biological networks, it is unlikely that the brain remembers previous tasks in a
way that causes it to lose the capacity to learn new tasks. However, it is also not clear how the
balance between capacity and task complexity plays out in the mammalian brain, which on the
one hand has many orders of magnitude more neurons than the networks analyzed here, but on

172 Natural continual learning
4

vs
 5

1
vs

 7

r2 = 0.4

k = 1

r2 = 1.0

k = 2

r2 = 1.0

k = 3

r2 = 1.0

k = 6

r2 = 1.0

k = 10

r2 = 1.0

k = 15

r2 = 0.1 r2 = 0.11 r2 = 1.0 r2 = 1.0 r2 = 1.0 r2 = 1.0

task 4/5
learned

task 1/7
learned

Figure C.7 Latent dynamics during SMNIST. We considered two example tasks, 4 vs
5 (top) and 1 vs 7 (bottom). For each task, we simulated the response of a network trained
by DOWM to 100 digits drawn from that task distribution at different times during learning.
We then fitted a factor analysis model for each example task to the response of the network
right after the correponding task had been learned (squares; k = 2 and k = 3 respectively).
We used this model to project the responses at different times during learning into a common
latent space for each example task. For both example tasks, the network initially exhibited
variable dynamics with no clear separation of inputs and subsequently acquired stable dynamics
after learning to solve the task. The r2 values above each plot indicate the similarity of neural
population activity with that collected immediately after learning the corresponding task,
quantified across all neurons (not just the 2D projection).

the other hand also learns more behaviors that are more complex than the problems studied in
this work. In networks where capacity is not a concern, it may in fact be desirable to employ a
strategy similar to that of DOWM — projecting out more dimensions in the parameter updates
than is strictly necessary — so as to avoid forgetting in the face of the inevitable noise and
turnover of e.g. synapses and cells in biological systems.

Details of toy example in schematic

In Figure 4.1A, we consider two regression tasks with losses defined as:

ℓ1(θ) = 1
2(θ−θ1)TQQQ1(θ−θ1) (C.59)

ℓ2(θ) = 1
2(θ−θ2)TQQQ2(θ−θ2), (C.60)

173

0
1
2

1

convex lossA
Laplace Projected NCL (ours)

0
3
6

non-convex lossB

0
20
40

2

0
20
40

0 50 100 150
iteration

0
20
40

1
+

2

0 50 100 150
iteration

0
20
40

Figure C.8 Losses on toy optimization problems. (A) Loss as a function of optimization
step on task 1 (top), task 2 (middle) and the combined loss (bottom) on the convex toy continual
learning problem for different optimization methods. (B) As in (A), now for the non-convex
problem.

where θ1 = (3,−6)⊤, θ2 = (3,6)⊤,

QQQ1 =RRR(φ1)
[
1 0
0 ζ

]
RRR(φ1)T , (C.61)

QQQ2 =RRR(φ2)
[
2 0
0 ζ

]
RRR(φ2)T , (C.62)

RRR(φ) =
[
cos(φ) −sin(φ)
sin(φ) cos(φ)

]
, (C.63)

and ζ = 5.5. We ‘train’ on task 1 first by setting θ = θ1. We then construct a Laplace
approximation to the posterior after learning task 1 to find the posterior precision QQQ1 (which
is in this case exact since the loss is quadratic in θ). Now we proceed to train on task 2 by
maximizing the posterior (see Equation 2.31):

L2(θ) = ℓ2(θ)+ 1
2(θ−θ1)TQQQ1(θ−θ1) (C.64)

= ℓ2(θ)+ ℓ1(θ) (C.65)

The gradient of L2(θ) with respect to θ is given by:

∇θL=QQQ1(θ−θ1)+QQQ2(θ−θ2). (C.66)

174 Natural continual learning

We can optimize ℓ(θ) using the following three methods:

Laplace: ∆θ ∝QQQ1(θ−θ1)+QQQ2(θ−θ2) (C.67)
NCL: ∆θ ∝ (θ−θ1)+QQQ−1

1 QQQ2(θ−θ2) (C.68)
Projected: ∆θ ∝QQQ−1

1 QQQ2(θ−θ2), (C.69)

where γ is the learning rate. Note that in ‘projected’, we optimize on task 2 only rather than
on the Laplace posterior.

In Figure 4.1B, we consider a slight modification to ℓ2 such that the loss is no longer convex:

ℓ2(www) = 1
2(θ−θ2)TQQQ2(θ−θ2)+a−aexp

(
−1

2(θ−vvv)TQQQv(θ−vvv)
)
, (C.70)

where we have added a Gaussian with covariance QQQv to the second loss. The NCL pre-
conditioner from task 1 remains unchanged (QQQ−1

1) since ℓ1 is unchanged. Denoting G :=
aexp

(
−1

2(θ−vvv)TQQQv(θ−vvv)
)
, we thus have the following updates when learning task 2:

Laplace: ∆∆∆θ ∝QQQ1(θ−θ1)+QQQ2(θ−θ2)+QQQv(θ−vvv)G (C.71)
NCL: ∆∆∆θ ∝ (θ−θ1)+QQQ−1

1 QQQ2(θ−θ2)+QQQ−1
1 QQQv(θ−vvv)G (C.72)

Projected: ∆∆∆θ ∝QQQ−1
1 QQQ2(θ−θ2)+QQQ−1

1 QQQv(θ−vvv)G. (C.73)

In this non-convex case, the different methods can converge to different local minima (c.f.
Figure 4.1B).

The losses on both tasks as well as the combined loss as a function of optimization step are
illustrated in Figure C.8 for the convex and non-convex settings.

Appendix D

Reinforcement learning

D.1 Supplementary figures

250 500
mean RT (ms)

4

6

8

10

12

m
ea

n
re

w
ar

d

guided

250 500
mean RT (ms)

4

6

8

10

12

m
ea

n
re

w
ar

d

non-guided

250 500
mean RT (ms)

0.8

0.9

p(
op

tim
al

)

ini
tia

l
lat

er
0

500

1000

tim
e

(m
s)

A B C D

Figure D.1 Overview of human data for all participants. (A) Mean reward per episode
as a function of the average response time during the guided trials (Appendix D.2). Each
data point corresponds to a single participant. (B) Mean reward per episode as a function
of the average response time during the non-guided trials. The strong negative correlation
implies that participants on average got more reward when they acted faster, confirming that
participants who acted faster were not simply making random key presses. (C) Fraction
of actions that were consistent with an optimal policy as a function of mean response time,
plotted for all participants during the non-guided trials. There was a significant positive
Pearson correlation between these two quantities (r = 0.20; p < 0.024, permutation test). This
correlation confirms that participants who thought for longer were not simply disengaged with
the task, but that they instead invested the time to make higher-quality decisions. (D) Mean of
the log-normal distribution of perception-action delays fitted to data from the guided episodes
for each participant (dots) using either the first action within each trial (left) or all other actions
(right). These prior distributions were used to infer the thinking times in Figure 5.2.

176 Reinforcement learning

2 4 6
distance to goal

100

200

300

th
in

ki
ng

 ti
m

e

step = 1
step = 2
step = 3

2 4 6
distance to goal

0.4

0.6
π(

ro
llo

ut
)

A B

step = 1
step = 2
step = 3

Figure D.2 Thinking time and π(rollout) by distance to goal and step within trial.
(A) Figure illustrating the average thinking time across human participants as a function of
distance to goal (x-axis), conditioned on different steps within the trial (lines, legend). Subjects
generally spent longer thinking before the first action of each trial, after controlling for the
distance to goal, while subsequent actions were associated with similar thinking times. Lines
and shadings indicate mean and standard error when repeating the analysis across human
participants (n = 94). (B) π(rollout) for the agent clamped to the human trajectory as a
function of distance to goal and for different steps within the trial. Similar to the human
participants, the agent had a higher probability of performing a rollout on the first step of each
trial. Subsequent steps were associated with similar rollout probabilities after controlling for
the distance to goal. When conditioning on both distance to goal and step within trial, the
residual correlation between π(rollout) and thinking time remained at a significantly positive
value of r = 0.026±0.004 (mean ± sem).

D.1 Supplementary figures 177

(60
, 4

)
0.0

0.2

co
rre

la
tio

n
w

ith
th

in
ki

ng
 ti

m
e

(60
, 8

)

(60
, 1

2)

(10
0,

4)

(10
0,

8)

(10
0,

12
)

(14
0,

4)

(14
0,

8)

(14
0,

12
)

(60
, 4

)
0

1

Δs
te

ps

(60
, 8

)

(60
, 1

2)

(10
0,

4)

(10
0,

8)

(10
0,

12
)

(14
0,

4)

(14
0,

8)

(14
0,

12
)

succ un
−0.4

0.0

0.4

Δπ
(
̂ a 1
)

(60, 4)

succ un

(60, 8)

succ un

(60, 12)

succ un

(100, 4)

succ un

(100, 8)

succ un

(100, 12)

succ un

(140, 4)

succ un

(140, 8)

succ un

A B

C (140, 12)

Figure D.3 Properties of networks with different hyperparameters. To investigate the
robustness of our results to the choice of network size (N) and planning horizon (L), we trained
networks with each combination of N ∈ {60,100,140} and L ∈ {4,8,12} and repeated some of
our key analyses. For all analyses, we report mean and standard error across 5 networks with
each set of hyperparameters. The results in the main text are all reported for a network with
N = 100 and L = 8. (A) We quantified the correlation between the network π(rollout) and
human response times across different networks (c.f. Figure 5.2F). x-ticks indicate network size
and planning horizon as (N , L). (B) We computed the improvement in the network policy
from performing 5 rollouts compared to the policy in the absence of rollouts (c.f. Figure 5.3A).
The policy improvement was quantified as the average number of steps needed to reach the
goal on trial 2 in the absence of rollouts, minus the average number of steps needed with
5 rollouts enforced at the beginning of the trial and no rollouts during the rest of the trial.
Positive values indicate that rollouts improved the policy. (C) We investigated how rollouts
changed the policy (c.f. Figure 5.3E). For each network, we computed the average change in
π(â1) from before a rollout to after a rollout and report this change separately for successful
(‘succ’) and unsuccessful (‘un’) rollouts. Positive values indicate that â1 became more likely
and negative values that â1 became less likely after the rollout. We observe that networks
with longer planning horizons tend to have less positive ∆π(â1) for successful rollouts and
more negative ∆π(â1) for unsuccessful rollouts. This is consistent with a policy gradient-like
algorithm with a baseline that approximates the probability of success, which increases with
planning horizon. In other words, since longer rollouts are more likely to reach the goal, we
should expect them to be successful and not strongly update our policy when it occurs. On the
contrary, an unsuccessful rollout is less likely and should lead to a large policy change. The
converse is true for shorter planning horizons.

178 Reinforcement learning

0.00

0.50

1.00

st
at

e
pr

ed
ic

tio
n

0 2 4 6 8
training episodes (x106)

0.99

1.0

st
at

e
pr

ed
ic

tio
n

0.00

0.50

1.00

re
w

ar
d

pr
ed

ic
tio

n

0 2 4 6 8
training episodes (x106)

0.99

1.0

re
w

ar
d

pr
ed

ic
tio

n

A B

Figure D.4 Accuracy of the internal world model. (A) Accuracy of the internal transition
model over the course of training. Accuracy was computed as the probability that the predicted
next state was the true state reached by the agent, ignoring all teleportation steps where the
transition cannot be predicted. The accuracy was averaged across all timesteps from 1,000
episodes, and the line and shading indicate mean and standard error across 5 RL agents. The
upper panel considers the full range of [0, 1] while the lower panel considers the range [0.99,
1.0]. We see that the transition model rapidly approaches ceiling performance, although it
continues to improve slightly throughout training. (B) Accuracy of the internal reward model
over the course of training. Accuracy was computed as the probability that the predicted
reward location was the true reward location during the exploitation phase of the task (see
Figure D.5 for an analysis of the model accuracy during exploration). Lines and shadings
indicate mean and standard error across 5 RL agents.

D.1 Supplementary figures 179

5 10 15
states visited

0.00

0.25

0.50

ac
cu

ra
cy

optimal
agent

0.25 0.50
π(rollout)

0

100

200

th
in

ki
ng

 ti
m

e
(m

s)

data
shuffle

5 10 15
states visited

0

50

100

th
in

ki
ng

 ti
m

e
(m

s)

5 10 15
states visited

125

150

175

th
in

ki
ng

 ti
m

e
(m

s)

A B

C D

Figure D.5 Analyses of the exploration period in humans and RL agents. (A) At
each point in time, the agent outputs its belief over where the goal is located under its internal
model, which was trained using a cross-entropy loss (Appendix D.2). The figure shows the
average probability assigned to the true goal, plotted as a function of the number of unique
states visited during the exploration phase of the task. As more states are explored, the
posterior over possible goals becomes narrower and prediction accuracy increases. When the
model chooses to perform a rollout, the imagined goal is chosen as the maximum likelihood
location from this posterior to predict the ‘success’ of the rollout. The figure illustrates that
this imagined goal becomes increasingly likely to be the true goal as the agent explores more
of the environment. (B) Thinking time of human participants during exploration, plotted
as a function of π(rollout) for RL agents clamped to the human trajectory. Bars and error
bars indicate mean and standard error of the human thinking time across all states where
π(rollout) fell in the corresponding bin. Gray line indicates a control where human thinking
times have been shuffled. The Pearson correlation between π(rollout) and human thinking
times is r = 0.097±0.008, suggesting that the model captures some of the structure in human
thinking during exploration and not just during the exploitation phase. Note that the very
first action of the episode was not included in this or subsequent analyses of the human data.
(C) Model thinking time as a function of the number of unique states visited during the
exploration phase of the task, with each rollout assumed to take 120 ms as specified in the main
text and Appendix D.2. Line and shading indicate mean and standard error across RL agents.
The increase in thinking time with visited states mirrors the predictive performance from panel
(A) and suggests that the agent increasingly chooses to engage in ‘model-based’ planning as its
uncertainty over possible goal locations decreases. (D) Human thinking time as a function of
the number of unique states visited during the exploration phase of the task. Line and shading
indicate mean and standard error across participants. The increase in thinking time with states
visited suggests that humans may also transition to more model based behavior as the posterior
over possible goal locations becomes narrower. A notable difference from the computational
model is found early in the exploration phase, where human thinking times tend to decrease
slightly over the first few unique state visits.

180 Reinforcement learning

1 3 5
step within trial

50

150

250

th
in

ki
ng

 ti
m

e
(m

s)

human
goal dist = 2
goal dist = 3
goal dist = 4
goal dist = 5

1 3 5
step within trial

50

150

250

th
in

ki
ng

 ti
m

e
(m

s)

model
goal dist = 2
goal dist = 3
goal dist = 4
goal dist = 5

0.25 0.50 0.75
π(rollout)

0
50

100
150
200
250

th
in

ki
ng

 ti
m

e
(m

s) data
shuffle

π(r
oll

ou
t)

go
al

dis
t

res
idu

al
0.0

0.1

0.2

0.3
co

rre
la

tio
n

w
ith

th
in

ki
ng

 ti
m

e

5 10 15
states visited

0

50

100

150

th
in

ki
ng

 ti
m

e
(m

s)

0.25 0.50
π(rollout)

0

100

200

th
in

ki
ng

 ti
m

e
(m

s)

A B E

C D F
data
shuffle

Figure D.6 Model thinking times with a Euclidean prior. We retrained our model with
a prior that favors Euclidean actions, p(ak|sk) = 0.2Uall(ak)+0.8UEuclidean(ak|sk). Here, Uall

is a uniform distribution over all actions, and UEuclidean(ak|sk) is a uniform distribution over
those actions that do not cross a boundary from state sk. We then compared the thinking
times of this ‘Euclidean’ model to human thinking times, similar to the analyses in Figure 5.2
and Figure D.5. (A) Human thinking time as a function of the step-within-trial (x-axis) for
different initial distances to the goal at the beginning of the trial (lines, legend; Figure 5.2C).
Shading indicates standard error of the mean across 94 participants. (B) Model ‘thinking
times’ separated by time-within-trial and distance-to-goal, exhibiting a similar pattern to
human participants. Note that the Euclidean agents spend more time thinking than the
non-Euclidean agents in Figure 5.2D, and that this leads to a closer match to human thinking
times. (C) Binned human thinking time as a function of the probability that the Euclidean
agent chooses to perform a rollout, π(rollout). Error bars indicate standard error of the mean
within each bin. Gray horizontal line indicates a shuffled control, where human thinking times
were randomly permuted before the analysis. The Pearson corrrelation between these two
quantities was r = 0.185±0.006 (mean ± standard error). (D) Correlation between human
thinking time and the regressors (i) π(rollout) under the model, (ii) distance-to-goal, and (iii)
π(rollout) after conditioning on distance-to-goal (‘residual’; Appendix D.2). Bars and error bars
indicate mean and standard error across human participants (n= 94). The residual correlation
was r = 0.089±0.006. (E) Model thinking time as a function of the number of unique states
visited during the exploration phase of the task. Line and shading indicate mean and standard
error across RL agents. (F) Thinking time of human participants during exploration, plotted
as a function of π(rollout) for RL agents clamped to the human trajectory. Bars and error
bars indicate mean and standard error of the human thinking time across all states where
π(rollout) fell in the corresponding bin. Gray line indicates a control where human thinking
times have been shuffled. The Pearson correlation between π(rollout) and human thinking
times was r = 0.146±0.007.

D.1 Supplementary figures 181

25 50 75
number of home trials

0

2

4

fre
qu

en
cy

 (%
)

10 20
trial number

0.0

0.5

p(
Δt

<
5

s)

home away

200 300
recorded neurons

0.0

0.5

fre
qu

en
cy

 (%
)

0.90 0.95 1.00
tuning curve cor.

0

1

2

co
un

t (
x1

00
0)

alternate bins

−1 0 1
tuning curve cor.

first/second half

3 5 7 9
replay length

1

10

100

1000
co

un
t

home

3 5 7 9
replay length

A B C

D E away

Figure D.7 Overview of rodent data. (A) Kernel density estimate (σ = 3 trials) of the
distribution of the number of ‘home’ trials in each session across all animals (an equivalent
number of away trials was performed between the home trials). Dots indicate individual sessions.
(B) Fraction of trials where the animal reached the correct goal location and started licking
within 5 seconds of the trial starting, separated by home and away trials. Reaching the goal
within 5 seconds was used as a success criterion by Widloski and Foster (2022) since the goal
is never explicitly cued at this time (Appendix D.2). Line and shading indicate mean and
standard error across sessions. The animals learn the location of the home well within a few
trials and consistently return to this location on the home trials. (C) Distribution of the
number of recorded neurons in each session. Line indicates a convolution with a Gaussian
filter (15 neuron std) and dots indicate individual sessions. Note that consecutive sessions on
the same day (2-3 sessions per day) involved recording from the same neurons, so there are
fewer distinct data points than there are sessions. (D) Consistency of spatial tuning curves of
hippocampal neurons. Consistency was quantified by constructing two tuning curves on the 5x5
spatial grid (Figure 5.4A) for each neuron and computing the Pearson correlation between the
two tuning curves. The data was split into either even/odd time bins in a session (left plot) or
first/second half of the session (right plot) to compute a pair of tuning curves. (E) Distribution
of replay lengths, measured as the number of states visited in a replay, for all replays during
home (left) or away (right) trials. Note the log scale on the y-axis.

182 Reinforcement learning

true ctrl
0.0

0.2

0.4

0.6

0.8

p(
go

al
)

away trials

1 2 3
replay #

1.0

1.2

ov
er

-re
pr

es
en

ta
tio

n

A B away trials

Figure D.8 Analysis of replays during away trials. (A) Fraction of replays reaching either
the true goal (left) or a randomly sampled alternative goal location (right) during away trials.
In contrast to the home trials (Figure 5.4C), the goal is not over-represented during away trials,
where the goal location is unknown. (B) Over-representation of replay success as a function
of replay number within sequences of replays containing at least 3 distinct replay events (c.f.
Figure 5.4E). In contrast to the home trials, there is no increase in over-representation with
replay number during these away trials.

pre post
0.0

0.2

0.4

0.6

0.8

π(
ro
llo
ut
)

succ.

pre post

A B unsucc.

Figure D.9 Change in π(rollout) for successful and unsuccessful rollouts.
(A) π(rollout) before (left) and after (right) successful rollouts. Bars and error bars indi-
cate mean and standard error across 5 RL agents. The data used for this analysis was the
same data used in Figure 5.3E. (B) As in (A), now for unsuccessful rollouts. πpost(rollout) was
substantially larger after unsuccessful than successful rollouts (∆π(rollout) = 0.10±0.01 mean
± sem).

D.1 Supplementary figures 183

0 2 4 6 8
training episodes (x106)

0.0

2.5

5.0

7.5

m
ea

n
re

w
ar

d

60
80
100

0 2 4 6 8
training episodes (x106)

0.0

0.2

0.4

0.6
p(

ro
llo

ut
)

A B

Figure D.10 Performance and rollouts as a function of network size. (A) We trained
networks of different sizes (legend; N ∈ [60,80,100]) and quantified their performance over
the course of training. (B) Fraction of timesteps where the agent chose to perform a rollout
over the course of training for different network sizes. Note that the agents perform rollouts
at chance level but with high variance at initialization, and this data point was therefore not
included in the analysis in Figure 5.5E, where we only considered the learned rollout frequency
from episode 800,000 onwards. It is interesting to note that the agents first learn to suppress
the rollout frequency below chance before increasing it to levels above chance. This is consistent
with a theory where rollouts only become useful when (i) an internal world model has been
learned, and (ii) the agent has learned how to use rollouts to improve its policy. Finally, rollouts
become less frequent again later in training as the base policy improves.

184 Reinforcement learning

D.2 Methods

Software

All models were trained in Julia version 1.7 using Flux and Zygote for automatic differentiation
(Innes et al., 2018). Human behavioral experiments were written in OCaml, with the front-end
transpiled to javascript for running in the participants’ browsers. All analyses of the models
and human data were performed in Julia version 1.8. All analyses of hippocampal replay data
were performed in Python 3.8.

Statistics

Unless otherwise stated, all plots are reported as mean and standard error across human
participants (n = 94), independently trained RL agents (n = 5), or experimental sessions in
rodents (n= 37).

Environment

We generated mazes using Algorithm 4.

For each environment, a goal location was sampled uniformly at random. When subjects took
an action leading to the goal, they transitioned to this location before being teleported to a
random location. In the computational model, this was achieved by feeding the agent an input
at this location before teleporting the agent to the new location. The policy of the agent at
this iteration of the network dynamics was ignored, since the agent was teleported rather than
taking an action.

Reinforcement learning model

We trained our agent to maximize the expected reward, with the expectation taken both over
environments E and the agent’s policy π:

U = EE [J(θ)] (D.1)

= EE

[
Eπ

(
K∑

k=1
rk

)]
. (D.2)

Here, U is the utility function, k indicates the iteration within an episode, and rk indicates
the instantaneous reward at each iteration. We additionally introduced the following auxiliary

D.2 Methods 185

Algorithm 4: Maze generating algorithm
1 A← 4x4 arena with walls everywhere.
2 V ← {} % empty initial set of visited states.
3 s← random starting location.
4
5 % Define function to walk through the maze and remove walls
6 Function walk_maze(s, A, V)
7 V.add(s) % Add s to set of visited states
8 N ← neighbors(s) % Neighbors of s, including those through the periodic boundaries
9 % Iterate through all neighboring states in random order

10 for n ∈ randomize(N) do
11 % If we reached a state we have not seen before
12 if n /∈ V then
13 A.remove_wall(s, n) % Remove wall between s and n from arena
14 A, V = walk_maze(n, A, V) % Continue from new state

15 return A, V
16
17 A, V = walk_maze(s, A, V) % Construct maze using our recursive algorithm
18
19 %Remove 3 additional walls at random to increase the degeneracy of the tasks.
20 %This increases the number of decision points with multiple routes to the goal.
21 for i = 1:3 do
22 w = random_wall(A) % Select one of the remaining walls at random
23 A.remove_wall(w) % Remove from set of walls
24
25 return A % Return the maze we constructed

losses at each iteration:

LV = 0.5(Vk−Rk)2 value function (D.3)
LH = Eπk

logπk entropy regularization (D.4)

LP =−
∑

i

[
s

(i)
k+1 log ŝ(i)

k+1 +g(i) log ĝ(i)
k

]
internal world model. (D.5)

Here, ĝggk, and ŝssk+1 are additional network outputs representing the agent’s estimate of the
current reward location and upcoming state. ggg and sssk+1 are the corresponding ground truth
quantities, represented as one-hot vectors. Rk :=∑K

k′=k rk′ is the empirical cumulative future
reward from iteration k onwards, and Vk is the value function of the agent.

To maximize the utility and minimize the losses, we trained the RL agent on-policy using a
policy gradient algorithm with a baseline (Sutton and Barto, 2018) and parameter updates of

186 Reinforcement learning

the form

∆θ ∝
∑

ak∼π

[
(∇θ logπk(ak)︸ ︷︷ ︸

actor

+βv∇θVk︸ ︷︷ ︸
critic

)δk−βe∇θ

∑
a

πk,a logπk,a︸ ︷︷ ︸
entropy

+ βp∆θp︸ ︷︷ ︸
predictive

]
(D.6)

Here, δk := −Vk +Rk is the ‘advantage function’, and ∆θp = ∇θLP is the derivative of the
predictive loss LP , which was used to train the ‘internal model’ of the agent. βp = 0.5, βv = 0.05
and βe = 0.05 are hyperparameters controlling the importance of the three auxiliary losses.
While we use the predictive model explicitly in the planning loop, similar auxiliary losses are
also commonly used to speed up training by encouraging the learning of useful representations
(Jaderberg et al., 2016).

Our model consisted of a GRU network with 100 hidden units (Cho et al., 2014). The policy
was computed as a linear function of the hidden state followed by a softmax normalization.
The value function was computed as a linear function of the hidden state. The predictions of
the next state and reward location were computed with a neural network that received as input
a concatenation of the current hidden state hhhk and the action ak sampled from the policy (as a
one-hot representation). The output layer of this feedforward network was split into a part
that encoded a distribution over the predicted next state (a vector of 16 grid locations with
softmax normalization), and a part that encoded the predicted reward location in the same
way. This network had a single hidden layer with 33 units and a ReLU nonlinearity.

The model was trained using ADAM (Kingma and Ba, 2014) on 200,000 batches, each consisting
of 40 episodes, for a total of 8×106 training episodes. These episodes were sampled independently
from a total task space of (273± 13)× 106 tasks (mean ± standard error). The total task
space was estimated by sampling 50,000 wall configurations and computing the fraction of
the resulting 1.25×109 pairwise comparisons that were identical, divided by 16 to account for
the possible reward locations. This process was repeated 10 times to estimate a mean and
confidence interval. These considerations suggest that the task coverage during training was
≈ 2.9%, which confirms that the majority of tasks seen at test time are novel (although we do
not enforce this explicitly).

For all evaluations of the model, actions were sampled greedily rather than on-policy unless
otherwise stated. This was done since the primary motivation for using a stochastic policy is to
explore the space of policies to improve learning, and performance was better under the greedy
policy at test time.

To train the model with a Euclidean prior over actions (Figure D.6; Section 2.5.2), we replaced
the entropy regularization term LH = Eπk

[logπk] with a KL regularization of the form

LH = KL[π(ak|sk)||p(ak|sk)]. (D.7)

D.2 Methods 187

As mentioned in Figure D.6, p(ak|sk) = 0.2Uall(ak)+0.8UEuclidean(ak|sk), where Uall is a uniform
distribution over all actions, and UEuclidean(ak|sk) is a uniform distribution over those actions
that do not cross a boundary from state sk. Note that both here and for the standard entropy
regularization, we take gradient steps of the form E{s∼πθ} [∑k∇θKL[πθ(ak|sk)||p(ak|sk)]] (with
a uniform prior in the case of standard entropy regularization). By doing this, we ignore the
dependency of the state sequence {s} on θ, which is a common approach in the literature
(Levine, 2018). This results in the agent learning to follow the prior conditioned on the current
state, but it does not learn to move to states where the prior probability of selecting an action
is expected to be high (Levine, 2018). However, in future work it would be interesting to
systematically compare this approach to the use of the log derivative trick for estimating ∇θLH

as discussed in Section 2.5.

Planning

Our implementation of ‘planning’ in the form of policy rollouts is described in Algorithm 5.
This routine was invoked whenever a ‘rollout’ was sampled from the policy instead of a physical
action.

Algorithm 5: Planning routine for the RL agent
1 input: maximum planning depth (nmax), current hidden state (hhhk), and agent location

(sssk)
2 parameters: network parameters θ, defining φ(·), ζ(·), p(ĝgg|hhhk), and p(ŝss|a,hhh)
3
4 g̃gg← argmaxp(ĝgg|hhhk) % predicted goal location
5 h̃hhk, π̃k, s̃ssk← hhhk,πk,sssk % simulated hidden state, policy, and agent location, initialized to

true values
6 n← 0 % planning iteration
7
8 while n < nmax and s̃ssk+n ̸= g̃gg do
9 ãk+n ∼ π̃k+n[{a}no_plan] % imagined action sampled on-policy but from physical actions

only
10 s̃ssk+n+1← argmaxp(ŝssk+n+1|ãk+n, h̃hhk+n) % predicted next state from current imagined

state and action
11 x̃xxk+n+1←O(s̃ssk+n+1, g̃gg) % expected observations on next iteration (assuming access to

the function O(·))
12 h̃hhk+n+1← φ(x̃xxk+n+1, h̃hhk+n) % simulate agent dynamics
13 π̃k+n+1 = ζ(h̃hhk+n+1) % generate new policy
14 n← n+1 % update planning iteration
15
16 % return action sequence and whether the rollout reached the expected goal
17 return: {ãk′}k+n

k , δ(s̃ssk+n, g̃gg)

188 Reinforcement learning

For the network update following a rollout, the input xxxk+1 was augmented with an additional
‘rollout input’ consisting of (i) the sequence of simulated actions, each as a 1-hot vector, and
(ii) a binary input indicating whether the imagined sequence of states reached the imagined
goal location. Additionally, the time within the session was only updated by 120 ms after a
rollout in contrast to the 400 ms update after a physical action or teleportation step.

Note that while both an imagined ‘physical state’ s̃ssk and ‘hidden state’ h̃hhk are updated during
the rollout, the agent continues from the original location sssk and hidden state hhhk after the
rollout, but with an augmented input. Additionally, gradients were not propagated through the
rollout process, which was considered part of the ‘environment’. This means that there was
no explicit gradient signal that encouraged the policy to drive useful or informative rollouts.
Instead, the rollout process simply relied on the utility of the base policy optimized for acting
in the environment.

Performance by number of rollouts

To quantify the performance as a function of the number of planning steps in the RL agent
(Figure 5.3A), we simulated each agent in 1,000 different mazes until it first found the goal and
was teleported to a random location. We then proceeded to enforce a particular number of
rollouts before the agent was released in trial 2. During this release phase, no more rollouts
were allowed – in other words, the policy was re-normalized over the physical actions, and the
probability of performing a rollout was set to zero. Performance was then quantified as the
average number of steps needed to reach the goal during this test phase. The optimal reference
value was computed as the average optimal path length for the corresponding starting states.
When performing more than one sequential rollout prior to taking an action, the policy of the
agent can continue to change through two potential mechanisms. The first is that the agent
can explicitly ‘remember’ the action sequences from multiple rollouts and somehow arbitrate
between them. The second is to progressively update the hidden state in a way that leads to
a better expected policy with each rollout, since the feedback from a rollout is incorporated
into the hidden state that induces the policy used to draw the next rollout. On the basis
of the analysis in Figure 5.5, we expect the second mechanism to be dominant, although we
did not explicitly test the ability of the agent to ‘remember’ multiple action sequences from
sequential rollouts. For this and all other RNN analyses, the agent executed the most likely
action under the policy during ‘testing’ in contrast to the sampling performed during training,
where such stochasticity is necessary for exploring the space of possible actions. All results
were qualitatively similar if actions were sampled during the test phase, although average
performance was slightly worse.

D.2 Methods 189

Performance in the absence of rollouts and with shuffled rollout times

To quantify the performance of the RL agent in the absence of rollouts, we let the agent
receive inputs and produce outputs as normal. However, we set the probability of performing
a rollout under the policy to zero and re-normalized the policy over the physical actions
before choosing an action from the policy. We compared the average performance of the agent
(number of rewards collected) in this setting to the performance of the default agent in the
same environments.

To compare the original performance to an agent with randomized rollout times, we counted the
number of rollouts performed by the default agent in each environment. We then re-sampled a
new set of network iterations at which to perform rollouts, matching the size of this new set
to the original number of rollouts performed in the corresponding environment. Finally, we
let the agent interact with the environment again, while enforcing a rollout on these network
iterations, and preventing rollouts at all other timesteps. It is worth noting that we could not
predict a priori the iterations on which the agent would find the goal, at which point rollouts
were not possible. If a rollout had been sampled at such an iteration, we re-sampled this rollout
from the set of remaining network iterations.

Rollouts by network size

To investigate how the frequency of rollouts depended on network size (Figure 5.5E; Figure D.10),
we trained networks with either 60, 80, or 100 hidden units (GRUs). Five networks were trained
with each size. At regular intervals during training, we tested the networks on a series of 5,000
mazes and computed (i) the average reward per episode, and (ii) the fraction of actions that
were rollouts rather than physical actions. We then plotted the rollout fraction as a function of
average reward to see how frequently an agent of a given size performed rollouts for a particular
performance.

Effect of rollouts on agent policy

To quantify the effect of rollouts on the policy of the agent, we simulated each agent in 1,000
different mazes until it first found the goal and was teleported to a random location. We
then resampled rollouts until both (i) a successful rollout and (ii) an unsuccessful rollout had
been sampled. Finally, we quantified πpre(â1) and πpost(â1) separately for the two scenarios
and plotted the results in Figure 5.3E. Importantly, this means that each data point in the
‘successful’ analysis had a corresponding data point in the ‘unsuccessful’ analysis with the exact
same maze, location, and hidden state. In this way, we could query the effect of rollouts on the
policy without the confound of how the policy itself affects the rollouts. For this analysis, we

190 Reinforcement learning

discarded episodes where the first 100 sampled rollouts did not result in both a successful and
an unsuccessful rollout.

For Figure D.9, we used the same episodes and instead quantified π(rollout) before and after
the rollout, repeating the analysis for both successful and unsusccessful rollouts.

Overlap between hidden state updates and policy gradients

Using a single rollout (τ̂) to approximate the expectation over trajectories of the gradient of
the expected future reward for a given episode, ∇hhhJfut(hhh), the policy gradient update in hhh

takes the form ∆hhh∝ (Rτ̂ − b)∇hhh logp(τ̂). Here, ∆hhh is the change in hidden state resulting from
the rollout, Rτ̂ is the ‘reward’ of the simulated trajectory, b is a constant or state-dependent
baseline, and ∇hhh logp(τ̂) is the gradient with respect to the hidden state of the log probability
of τ̂ under the policy induced by hhh. This implies that the derivative of the hidden state update
w.r.t. Rτ̂ , αααRNN := ∂∆hhh

∂Rτ̂
, should be proportional to αααPG :=∇hhh logp(τ̂).

For these analyses, we divided τ̂ into its constituent actions, defining αααPG
k :=∇hhh logp(âk|â1:k−1)

as the derivative w.r.t. the hidden state of the log probability of taking the simulated action
at step k, conditioned on the actions at all preceding steps (1 to k−1) being consistent with
the rollout. To compute αααRNN, we also needed to take derivatives w.r.t. Rτ̂ – the ‘reward’
of a rollout. A naive choice here would be to simply consider Rτ̂ to be the input specifying
whether the rollout reached the reward or not. However, we hypothesized that the agent would
also use information about e.g. how long the simulated trajectory was in its estimate of the
‘goodness’ of a rollout (since a shorter rollout implies that the goal was found faster). We
therefore determined the direction in planning input state space that was most predictive of
the time-to-goal of the agent. We did this by using linear regression to predict the (negative)
time-to-next-reward as a function of the planning feedback xxxf across episodes and rollouts.
This defines the (normalized) direction ν̂νν in planning input space that maximally increases
the expected future reward. Finally, we defined Rτ̂ as the magnitude of the planning input
in direction ν̂νν, Rτ̂ := xxxf · ν̂νν. We could then compute αααRNN with this definition of Rτ̂ using
automatic differentiation.

In Figure 5.5C, we computed αααRNN and αααPG
1 across 1,000 episodes. We then performed PCA

on the set of αααPG
1 and projected both αααRNN and αααPG

1 into the space spanned by the top 3 PCs.
Finally, we computed the mean value of both quantities conditioned on â1 to visualize the
alignment. In Figure 5.5D, we considered the same αααRNN and αααPG

1 vectors, now computing the
cosine similarity between each pair of vectors before taking an average. This cosine similarity
was still computed in the space spanned by the top 3 PCs since we were primarily interested
in changes in hhh within the subspace that would affect logp(τ̂). As a control, we repeated the
analysis after altering the planning input xxxf to falsely inform the agent that it had simulated
some other action â1,ctrl ̸= â1. Finally, we also repeated this analysis using αααPG

2 to characterize

D.2 Methods 191

how the effects of the planning input propagated through the recurrent network dynamics to
modulate future action probabilities.

Human data collection

The human behavioral experiment used in this study has been certified as exempt from IRB
review by the UC San Diego Human Research Protection Program. We collected data from 100
human participants (50 male, 50 female) recruited on Prolific to perform the task described in
Figure 5.1B. All participants provided informed consent prior to commencing the experiment.
Subjects were asked to complete (i) 6 ‘guided’ episodes where the optimal path was shown
explicitly, followed by (ii) 40 non-guided episodes, and (iii) 12 guided episodes. The task can be
found online. During data collection, a subject was deemed ‘disengaged’, and the trial repeated,
if one of three conditions were met: (i) the same key was pressed 5 times in a row, (ii) the same
key pair was pressed four times in a row, or (iii) no key was pressed for 7 seconds. Participants
were paid a fixed rate of $3 plus a performance-dependent bonus of $0.002 for each completed
trial across both guided and non-guided episodes. The experiment took approximately 22
minutes to complete, and the average pay across participants was $10.5 per hour including the
performance bonus.

The data from 6 participants with a mean response time greater than 690 ms during the guided
episodes were excluded to avoid including participants who were not sufficiently engaged with
the task. For the guided episodes, only the last 10 episodes were used for further analyses.
For the non-guided episodes, we discarded the first two episodes and used the last 38 episodes.
This was done to give participants two episodes to get used to the task for each of the two
conditions, and the first set of guided episodes was intended as an instruction in how to perform
the task.

Performance as a function of trial number

We considered all episodes where the humans or RL agents completed at least four trials,
evaluating the RL agents across 50,000 episodes. We then computed the average across these
episodes of the number of steps to goal as a function of trial number separately for all subjects.
Figure 5.2A illustrates the mean and standard error across subjects (human participants or
RL agents). The optimal value during the exploitation phase was computed by using dynamic
programming to find the shortest path between each possible starting location and the goal
location, averaged across all environments seen by the RL agent. To compute the exploration
baseline, brute force search was used to identify the path that explored the full environment
as fast as possible. The optimal exploration performance was then computed as the expected
time-to-first-reward under this policy, averaged over all possible goal locations.

https://rl-game.cbl-cambridge.org/wlnvwoqlcgtkxjqnzjit?PROLIFIC_PID=TEST

192 Reinforcement learning

Estimation of thinking times

In broad strokes, we assumed that for each action, the response time tr is the sum of a thinking
time tt and some perception-action delay td, both subject to independent variability:

tr = tt + td with tt ∼ pt and td ∼ pd. (D.8)

Here, {tr, tt, td} ≥ 0 since elapsed time cannot be negative. We assumed that the prior distribu-
tion over perception-action delays, pd, was identical during guided and non-guided trials. For
each subject, we obtained a good model of pd (see below) by considering the distribution of
response times measured during guided trials. This was possible because guided trials involved
no ‘thinking’ by definition, such that td ≡ tr was directly observed. Finally, for any non-guided
trial with observed response tr, we formed a point estimate of the thinking time by computing
the mean of the posterior p(tt|tr):

t̂t|tr = Ep(tt|tr)[tt]. (D.9)

In more detail, we took pt during non-guided trials to be uniform between 0 and 7 s – the
maximum response time allowed, beyond which subjects were considered disengaged, and the
trial was discarded and reset. For pd(td), we assumed a shifted log-normal distribution,

pd(td;µ,σ,δ) =

1

(td−δ)σ
√

2π
exp

[
− (log(td−δ)−µ)2

2σ2

]
if td > δ

0 otherwise
(D.10)

with parameters µ, σ, and δ obtained via maximum likelihood estimation based on the collection
of response times tr ≡ td observed during guided trials. For a given δ, the maximum likelihood
values of µ and σ are simply given by the mean and standard deviation of the logarithm of the
shifted observations. To fit this shifted log-normal model, we thus performed a grid search over
δ ∈ [0,min(tguided

r)−1] at 1 ms resolution and selected the value under which the optimal (µ,σ)
gave the largest likelihood. This range of δ was chosen to ensure that (i) only positive values of
tguided
r had positive probability, and (ii) all observed tguided

r had non-zero probability. We then
retained the optimal µ, σ, and δ to define the prior over pd(td) on non-guided trials for each
subject.

According to Bayes’ rule, the posterior is proportional to

p(tt|tr)∝ p(tr|tt)p(tt) (D.11)

D.2 Methods 193

where

p(tr|tt) =
∫ ∞

0
dtd pd(td)p(tr|tt, td) (D.12)

=
∫ ∞

0
dtd pd(td)δ(td− (tr− tt)) (D.13)

= pd(tr− tt) (D.14)

Therefore, the posterior is given by

p(tt|tr)∝
{
pd(tr− tt) if tt > 0

0 otherwise,
(D.15)

resulting in the following posterior mean:

t̂t|tr := Ep(tt|tr)[tt] = tr−
∫ tr

δ
td pd(td|td < tr;µ,σ,δ)dtd. (D.16)

Here, pd(td|td < tr) denotes pd(td) re-normalized over the interval td < tr, and the condition
(td < tr) is equivalent to (tt > 0). We note that the integral runs from δ to tr since pd(td) = 0
for td < δ. As δ simply shifts the distribution over td, we can rewrite this as

t̂t|tr = tr− δ−
∫ tr−δ

0
xpd(x|x < tr− δ;µ,σ,δ = 0)dx. (D.17)

This is useful since the conditional expectation of a log-normally distributed random variable
with δ = 0 is given in closed form by

Eµ,σ[x|x < k] =
∫ k

0
xp(x|x < k;µ,σ,δ = 0)dx (D.18)

= exp[µ+0.5σ2]
Φ
(

log(k)−µ−σ2

σ

)
Φ
(

log(k)−µ
σ

) , (D.19)

where Φ(·) is the cumulative density function of the standard Gaussian, N (0,1). This allows us
to compute the posterior mean thinking time for an observed response time tr in closed form
as

t̂t|tr = tr− δ−Eµ,σ[x|x < tr− δ]. (D.20)

We note that the support of pd(td|td < tr;µ,σ,δ) is td ∈ [δ, tr]. For 0.6% of the non-guided
decisions, the value of tr was lower than the estimated δ for the corresponding participant,
in which case p(tt|tr) is undefined. In such cases, we defined the thinking time to be t̂t|tr = 0,
since the response time was shorter than our estimated minimum perception-action delay. A

194 Reinforcement learning

necessary (but not sufficient) condition for tr < δ is that tr is smaller than the smallest response
time in the guided trials.

The whole procedure of fitting and inference described above was repeated separately for actions
that immediately followed a teleportation step (i.e. the first action in each trial) and for all
other actions. This is because we expected the first action in each trial to be associated with an
additional perceptual delay compared to actions that followed a predictable transition.

All results were qualitatively similar using other methods for estimating thinking time, including
(i) a log-normal prior over td with no shift (δ = 0), (ii) using the posterior mode instead of
the posterior mean, (iii) estimating a constant td from the guided trials, and (iv) estimating a
constant td as the 0.1 or 0.25 quantile of tr from the non-guided trials.

Thinking times in different situations

To investigate how the thinking time varied in different situations, we considered only ex-
ploitation trials and computed for every action (i) the minimum distance to the goal at the
beginning of the corresponding trial, and (ii) what action number this was within the trial. We
then computed the mean thinking time as a function of action number separately for each
distance-to-goal. This analysis was repeated across experimental subjects and results reported
as mean and standard error across subjects.

We repeated this analysis for the RL agents, where ‘thinking time’ was now defined based
on the average number of rollouts performed, conditioned on action-within-trial and original
distance to goal.

Comparison of human and model thinking times

For each subject and each RL agent, we clamped the trajectory of the agent to that taken by
the subject (i.e. we used the human actions instead of sampling from the policy). After taking
an action, we recorded π(rollout) under the model on the first timestep of the new state for
comparison with human thinking times. We then sampled a rollout with probability π(rollout)
and took an action (identical to the next human action) with probability 1−π(rollout), repeating
this process until the next state was reached. Finally, we computed the average π(rollout)
across 20 iterations of each RL agent for comparison with the human thinking time in each
state. Figure 5.2E shows the human thinking time as a function of π(rollout), with the bars
and error bars illustrating the mean and standard error in each bin. For this analysis, data was
aggregated across all participants. Results were similar if we compared human thinking times
with the average number of rollouts performed rather than the initial π(rollout).

D.2 Methods 195

In Figure 5.2F, we computed the correlation between thinking time and various regressors on
a participant-by-participant basis and report the result as mean and standard error across
participants (n= 94). For the ‘residual’ correlation, we first computed the mean thinking time
for each distance-to-goal for each participant and the corresponding mean π(rollout) for the
RL agents. We then subtracted the appropriate mean values from the thinking times and
π(rollout) in the human participants and RL agents. In other words, we subtracted the average
thinking time for situations 5 steps from the goal from all data points where the participant was
5 steps from the goal etc. Finally, we computed the correlation between the residual π(rollout)
and the residual thinking times. This analysis was repeated across all participants and the
result reported as mean and standard error across participants. Note that all ‘distance-to-goal’
measures refer to the shortest path to goal rather than the number of steps actually taken by
the participant to reach the goal.

Analysis of hippocampal replays

For our analyses of hippocampal replays in rats, we used data recently recorded by Widloski
and Foster (2022). This dataset consisted of a total of 37 sessions from 3 rats (n = 17, 12,
8 sessions for each rat) as they performed a dynamic maze task. This task was carried out
in a square arena with 9 putative reward locations. In each session, six walls were placed in
the arena, and a single reward location was randomly selected as the ‘home’ well. The task
involved alternating between moving to this home well and a randomly selected ‘away’ well.
Importantly, a delay of 5-15 s was imposed between the animal leaving the previous rewarded
well before reward (chocolate milk) became available at the next rewarded well. On the away
trials, the emergence of reward was also accompanied by a visual cue at the rewarded well,
informing the animal that this was the reward location. Note that we only considered replays
at the previous well before this visual cue and reward became available. In a given session, the
animals generally performed around 80 trials (40 home trials and 40 away trials; Figure D.7).
For further task details, we refer to Widloski and Foster (2022).

For our analyses, we only included trials which lasted less than 40 seconds. We did this to
discard time periods where the animals were not engaged with the task. Additionally, we
discarded the first home trial of each session, where the home location was unknown, since
we wanted to compare the hippocampal replays with model rollouts during the exploitation
phase of the maze task. For all analyses, we discretized the environment into a 5x5 grid (the
3x3 grid of wells and an additional square of states around these) in order to facilitate more
direct comparisons with our human and RNN task. Following Widloski and Foster (2022), we
defined ‘movement epochs’ as times where the animal had a velocity greater than 2 cm/s and
‘stationary epochs’ as times there the animal had a velocity less than 2 cm/s.

196 Reinforcement learning

Replay detection

To detect replays, we followed Widloski and Foster (2022) and fitted a Bayesian decoder to
neural activity as a function of position during movement epochs in each session, assuming
Poisson noise statistics and considering only neurons with an average firing rate of at least
0.1 Hz over the course of the session. This decoder was trained on a rolling window of neural
activity spanning 75 ms and sampled at 5 ms intervals (Widloski and Foster, 2022). We then
detected replays during stationary epochs by classifying each momentary hippocampal state as
the maximum likelihood state under the Bayesian decoder, again using neural activity in 75 ms
windows at 5 ms intervals. Forward replays were defined as sequences of states which included 2
consecutive transitions to an adjacent state (i.e. a temporally and spatially contiguous sequence
of three or more states), and which originated at the true animal location. For all animals, we
only analyzed replays where the animal was at the previous reward location before it initiated
the new trial (c.f. Widloski and Foster, 2022). To increase noise robustness, we allowed for
short ‘lapses’ in a replay, defined as periods with a duration less than or equal to 20 ms, where
the decoded location moved to a distant location before returning to the previously decoded
location. These lapses were ignored for downstream analyses.

Wall avoidance

To compute the wall avoidance of replays (Figure 5.4B), we calculated the fraction of state
transitions that passed through a wall. This was done across all replays preceding a ‘home’
trial (i.e. when the animal knew the next goal). As a control, we computed the same quantity
averaged over 7 control conditions, which corresponded to the remaining non-identical rotations
and reflections of the walls from the corresponding session. We repeated this analysis for all
sessions and report the results in Figure 5.4 as mean and standard error across sessions. To
test for significance, we randomly permuted the ‘true’ and ‘control’ labels independently for
each session and computed the fraction of permutations (out of 10,000), where the difference
between ‘control’ and ‘true’ was larger than the experimentally observed value.

This analysis was also repeated in the RL agent, where the control value was computed
with respect to 50,000 other wall configurations sampled from the maze generating algorithm
(Algorithm 4).

Reward enrichment

To compute the reward enrichment in hippocampal replays (Figure 5.4C), we computed the
fraction of all replays preceding a ‘home’ trial that passed through the reward location. As a
control, we repeated this analysis for the remaining 7 locations that were neither the reward
location nor the current agent location (for each replay). Control values are reported as the

D.2 Methods 197

average across these 7 control locations across all replays. This analysis was repeated for
all sessions. To test for significance, we randomly permuted the ‘goal’ and ‘control’ labels
independently for each session and computed the fraction of permutations (out of 10,000)
where the difference between ‘goal’ and ‘control’ was larger than the experimentally observed
value.

This analysis was also repeated in the RL agent, where the control value was computed across
the remaining 14 possible goal locations (that were not the current location or true goal).

Behavior by replay type

To investigate how the animal behavior depended on the type of replay (Figure 5.4D), we
analyzed home trials and away trials separately. We constructed a list of all the ‘first’ replayed
actions â1, defined as the cardinal direction corresponding to the first state transition in each
replay. We then constructed a corresponding list of the first physical action following the replay,
corresponding to the cardinal direction of the first physical state transition after the replay.
Finally, we computed the overlap between these two vectors to arrive at the probability of
‘following’ a replay. This overlap was computed separately for ‘successful’ and ‘unsuccessful’
replays, where successful replays were defined as those that reached the goal without passing
through a wall. For the unsuccessful replays, we considered the 7 remaining locations that were
not the current animal location or current goal. We then computed the average overlap under
the assumption that each of these locations were the goal, while discarding replays that were
successful for the ‘true’ goal. This analysis was performed independently across all sessions
and results reported as mean and standard error across sessions. To test for significance, we
randomly permuted the ‘successful’ and ‘unsuccessful’ labels independently for each session and
computed the fraction of permutations (out of 10,000) where the difference between successful
and unsuccessful replays was larger than the experimentally observed value.

This analysis was also repeated in the RL agent, where we considered all exploitation trials
together since they were not divided into ‘home’ or ‘away’ trials. In this case, the control was
computed with respect to all 14 locations that were not the current location or current goal
location.

Effect of consecutive replays

To compute how the probability of a replay being ‘successful’ depended on replay number
(Figure 5.4E), we considered all trials where an animal performed at least 3 replays. We then
computed a binary vector indicating whether each replay was successful or not. From this
vector, we subtracted the expected success frequency from a linear model predicting success
from (i) the time since arriving at the current well, and (ii) the time until departing the current

198 Reinforcement learning

well. We did this to account for any effect of time that was separate from the effect of replay
number, since such an effect has previously been reported by Ólafsdóttir et al. (2017). However,
this work also notes that many of what they denote ‘disengaged’ replays are non-local and
would automatically be filtered out by our focus on local replays. When fitting this linear
model, we capped all time differences at a maximum value of |∆t|= 15 s to avoid the analysis
being dominated by outliers, and because Ólafsdóttir et al. (2017) only observe an effect for
time differences in this range. Our results were not sensitive to altering or removing this
threshold. We then conditioned on replay number and computed the probability of success
(after regressing out time) as a function of replay number. Finally, we repeated this analysis for
all 7 control locations for each replay and divided the true values by control values defined as the
average across replays of the average across control locations. A separate correction factor was
subtracted from these control locations, which was computed by fitting a linear model to predict
the average probability of successfully reaching a control location as a function of the predictors
described above. The normalization by control locations was done to account for changes in
replay statistics that might affect the results, such as systematically increasing or decreasing
replay durations with replay number. To compute the statistical significance of the increase
in goal over-representation, we also performed this analysis after independently permuting
the order of the replays in each trial to break any temporal structure. This permutation was
performed after regressing out the effect of time. We repeated this analysis across 10,000
independent permutations and computed statistical significance as the number of permutations
for which the increase in over-representation was greater than or equal to the experimental
value.

For the corresponding analysis in the RL agents, we did not regress out time since there is no
separability between time and replay number. Additionally, the RL agent cannot alter its policy
in the absence of explicit network updates – which in our model are always tied to either a
rollout or an action. As noted in the main text, an increase in the probability of ‘success’ with
replay number in the RL agent could also arise from the fact that performing further replays is
less likely after a successful replay than after an unsuccessful replay (Figure D.9). We therefore
performed the analysis of consecutive replays in the RL agent in a ‘crossvalidated’ manner at
the level of the policy. In other words, every time the agent performed a rollout, we drew two
samples from the rollout generation process. The first of these samples was used as normal by
the agent to update hhhk and drive future behavior. The second sample was never used by the
agent, but was instead used to compute the ‘success frequency’ for our analyses. This was done
to break the correlation between the choice of performing a replay and the assessment of how
good the policy was, which allowed us to compute an unbiased estimate of the quality of the
policy as a function of replay number. As mentioned in the main text, such an analysis is not
possible in the biological data. However, since the biological task was not a reaction time task,
we expect less of a causal effect of replay success on the number of replays. Additionally, as

D.2 Methods 199

noted in the text, if some of the effect in the biological data is in fact driven by a decreased
propensity for further replays after a successful replay, that is in itself supporting evidence for
a theory of replay as a form of planning.

	Table of contents
	List of figures
	List of tables
	1 Introduction
	1.1 Bayesian machine learning in systems neuroscience
	1.2 Weak principle of Bayesian machine learning
	1.3 Strong principle of Bayesian machine learning
	1.4 Structure and outline

	2 Background
	2.1 Gaussian process regression
	2.2 Latent variable models for high-dimensional data
	2.2.1 Motivation and Bayesian formulation
	2.2.2 Parametric models
	2.2.3 Non-parametric models

	2.3 Variational Bayesian inference for computational tractability
	2.3.1 Inference can be formulated as optimization
	2.3.2 Optimization-based inference can be done by gradient descent

	2.4 Continual learning as Bayesian inference
	2.4.1 Problem setting and notation
	2.4.2 Bayesian continual learning

	2.5 Reinforcement learning as Bayesian inference
	2.5.1 The reinforcement learning problem and policy gradients
	2.5.2 Reformulating RL as Bayesian inference

	3 Latent variable models
	3.1 Bayesian Gaussian process factor analysis
	3.1.1 Introduction
	3.1.2 Method
	3.1.3 Experiments and results
	3.1.4 Discussion

	3.2 Manifold Gaussian process latent variable models
	3.2.1 Introduction
	3.2.2 Method
	3.2.3 Experiments and results
	3.2.4 Discussion

	4 Continual learning
	4.1 Natural continual learning
	4.1.1 Introduction
	4.1.2 Method
	4.1.3 Experiments and results
	4.1.4 Discussion

	4.2 Representational stability in biological and artificial circuits
	4.2.1 Introduction
	4.2.2 Two classes of continual learning algorithms
	4.2.3 Discussion

	5 Reinforcement learning to plan
	5.1 Introduction
	5.2 Results
	5.2.1 Humans think for different durations in different contexts
	5.2.2 A recurrent network model of planning
	5.2.3 Human thinking times correlate with agent rollouts
	5.2.4 Rollouts improve the policy of the RL agent
	5.2.5 Hippocampal replays resemble policy rollouts
	5.2.6 RL agents use rollouts to optimize their hidden state

	5.3 Discussion
	5.3.1 Neural mechanisms of planning and decision making
	5.3.2 Alternative planning algorithms
	5.3.3 Why do we spend time thinking?

	6 Discussion
	References
	Appendix A Bayesian GPFA
	Appendix B Manifold GPLVMs
	Appendix C Natural continual learning
	Appendix D Reinforcement learning
	D.1 Supplementary figures
	D.2 Methods

